
Computer-Based
Instruments

NI-DMM Software
User Manual
NI-DMM Software User Manual

March 2000 Edition
Part Number 370153A-01

Worldwide Technical Support and Product Information

www.ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011,
Canada (Calgary) 403 274 9391, Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521,
China 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24,
Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186, India 91805275406,
Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico (D.F.) 5 280 7625,
Mexico (Monterrey) 8 357 7695, Netherlands 0348 433466, New Zealand 09 914 0488, Norway 32 27 73 00,
Poland 0 22 528 94 06, Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085,
Sweden 08 587 895 00, Switzerland 056 200 51 51, Taiwan 02 2528 7227, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix. To comment on the
documentation, send e-mail to techpubs@ni.com

© Copyright 2000 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions,
due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other
documentation. National Instruments will, at its option, repair or replace software media that do not execute programming
instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not
warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of
the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of
returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult
National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages arising out of
or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’ S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR
NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL
INSTRUMENTS WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National Instruments will
apply regardless of the form of action, whether in contract or tort, including negligence. Any action against National Instruments
must be brought within one year after the cause of action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty provided herein does not cover damages, defects,
malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or
surges, fire, flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including
photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written
consent of National Instruments Corporation.

Trademarks
CVI™, LabVIEW™, National Instruments™, and ni.com™ are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL
OF RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL
COMPONENTS IN ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE
EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS
CAN BE IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL
POWER SUPPLY, COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE
FITNESS, FITNESS OF COMPILERS AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION,
INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR
FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES, TRANSIENT FAILURES OF ELECTRONIC
SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR ERRORS ON THE PART OF
THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER
COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH)
SHOULD NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM
FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE
REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO
BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS
FROM NATIONAL INSTRUMENTS' TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER
MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT
EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS
ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL
INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A
SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND
SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Conventions

The following conventions are used in this manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

bold Bold text denotes items that you must select or click on in the software,
such as menu items and dialog box options. Bold text also denotes
parameter names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

monospace bold Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

© National Instruments Corporation v NI-DMM Software User Manual

Contents

Chapter 1
Introduction

How to Use This Manual ...1-1
What You Need to Get Started ..1-2
Background..1-2

VXIplug&play...1-2
IVI..1-2

Chapter 2
Getting Started

Introduction..2-1
Session Communication ..2-2
Attributes ...2-4

Accessing Attributes..2-4
Attribute Functionality ..2-5

Read-Only State Attributes ...2-5
Operations..2-6

Overview of VXIplug&play Required Operations..2-6
Initialize and Close..2-6
Reset..2-6
Self Test ..2-7
Error Query and Error Message ..2-7
Revision Query ...2-7

Chapter 3
Introductory Programming Examples Using Easy I/O
and Application Functions

Basic Startup ..3-2
Example 3-1. Initialization ..3-2

Discussion ...3-3
Example 3-2. Measuring DC Volts with the NI-DMM...................................3-4

Discussion ...3-7
Measuring AC Volts with the NI-DMM ...3-8
Measuring Resistance with the NI-DMM ...3-8
Measuring Current with the NI-DMM ..3-9
Testing Diodes with the NI-DMM ..3-9

Contents

NI-DMM Software User Manual vi www.ni.com

Chapter 4
NI-DMM Driver Application Examples

Examples ...4-4
Initialize and Close Functions ... 4-5
Application Functions ... 4-5
Advanced Programming Using Low-Level Functions.. 4-7

Background Acquisition ... 4-7
Foreground Acquisition .. 4-12
Triggered Acquisition ... 4-15
Interval Scanning .. 4-23
Handshaking Mode ... 4-27
Synchronous Mode ... 4-31
Scanning an SCXI Multiplexer Module Using the NI-DMM......................... 4-34

Temperature with Thermocouple Measurement............................... 4-43
Temperature with Thermistor Measurement 4-46
Temperature with RTD Measurement .. 4-48
Several Sensor-Type Measurements in the Same Application......... 4-50

Chapter 5
NI-DAQ Driver Application Examples

NI-DAQ Application Example.. 5-1
Using Triggering with NI-DAQ .. 5-6
Using the DMM with SCXI Multiplexers in NI-DAQ.. 5-10

Chapter 6
Build Your Own Application

Appendix A
Microsoft Visual Basic Examples

Foreground Acquisition... A-1
Background Acquisition.. A-3
Triggered Acquisition.. A-6
Interval Scanning... A-8
Handshaking Acquisition .. A-10

Appendix B
Technical Support Resources

Contents

© National Instruments Corporation vii NI-DMM Software User Manual

Glossary

Index

Figures
Figure 2-1. niDMM Initialize Block Diagram ...2-2
Figure 2-2. Initialize With Options Block Diagram...2-2
Figure 2-3. Session Block Diagram ...2-3
Figure 2-4. Set Auto Zero Block Diagram...2-4
Figure 2-5. Set Powerline Block Diagram ...2-5

Figure 3-1. niDMM Initialize Block Diagram ...3-2
Figure 3-2. Initialize Example Block Diagram..3-2
Figure 3-3. niDMM Easy IO Simple Acquisition Front Panel3-5
Figure 3-4. niDMM Easy IO Simple Acquisition Block Diagram3-5

Figure 4-1. Acquisition Model Flowchart..4-1
Figure 4-2. Easy I/O Simple Acquisition Block Diagram4-4
Figure 4-3. Simple Acquisition Block Diagram ..4-6
Figure 4-4. Background Acquisition Front Panel ..4-8
Figure 4-5. Background Acquisition Block Diagram ..4-9
Figure 4-6. Foreground Acquisition Front Panel ...4-12
Figure 4-7. Foreground Acquisition Block Diagram ...4-13
Figure 4-8. Trigger with Internal Sample Trigger Front Panel................................4-16
Figure 4-9. Trigger with Internal Sample Trigger Block Diagram..........................4-17
Figure 4-10. Trigger with External Sample Trigger Front Panel...............................4-20
Figure 4-11. Trigger with External Sample Trigger Block Diagram.........................4-21
Figure 4-12. Interval Scanning Front Panel ...4-24
Figure 4-13. Interval Scanning Block Diagram ...4-25
Figure 4-14. Handshaking Front Panel ..4-28
Figure 4-15. Handshaking Block Diagram ..4-29
Figure 4-16. Synchronous Triggering Front Panel ..4-31
Figure 4-17. Synchronous Triggering Block Diagram ..4-32
Figure 4-18. Scanning of SCXI Front Panel ..4-35
Figure 4-19. Scanning of SCXI Block Diagram ..4-36
Figure 4-20. Scanning of SCXI High-Level Front Panel...4-39
Figure 4-21. Scanning of SCXI High-Level Diagram ...4-40
Figure 4-22. Measure Voltage with DMM and Switches Front Panel.......................4-41
Figure 4-23. Measure Voltage with DMM and Switches Block Diagram.................4-42
Figure 4-24. Measure Thermocouple with DMM and Switches Front Panel4-44
Figure 4-25. Measure Thermocouple with DMM and Switches Block Diagram......4-45
Figure 4-26. Measure Thermistor with DMM and Switches Front Panel..................4-46
Figure 4-27. Measure Thermistor with DMM and Switches Block Diagram............4-47

Contents

NI-DMM Software User Manual viii www.ni.com

Figure 4-28. Measure RTD with DMM and Switches Front Panel 4-48
Figure 4-29. Measure RTD with DMM and Switches Block Diagram..................... 4-49
Figure 4-30. Measure Voltage and Temperature with DMM and

Switches Front Panel... 4-50
Figure 4-31. Measure Voltage and Temperature with DMM and

Switches Block Diagram... 4-51
Figure 4-32. Configure and Read Measurement Front Panel 4-52
Figure 4-33. Configure and Read Measurement Block Diagram 4-53

Figure 5-1. NI-DAQ Acquisition Example Front Panel .. 5-2
Figure 5-2. NI-DAQ Acquisition Example Block Diagram.................................... 5-2
Figure 5-3. NI-DAQ Customized Example Front Panel ... 5-4
Figure 5-4. NI-DAQ Customized Example Block Diagram 5-5
Figure 5-5. NI-DAQ Acquire N Scans External Start Trigger Front Panel............. 5-6
Figure 5-6. NI-DAQ Acquire N Scans External Start Trigger Block Diagram....... 5-7
Figure 5-7. NI-DAQ Acquire N Scans External Sample Trigger Front Panel 5-8
Figure 5-8. NI-DAQ Acquire N Scans External Sample Trigger

Block Diagram.. 5-9
Figure 5-9. NI-DAQ Scan SCXI Front Panel .. 5-10
Figure 5-10. NI-DAQ Scan SCXI Block Diagram.. 5-11

Figure 6-1. Application Tree Front Panel.. 6-1
Figure 6-2. Application Tree Block Diagram.. 6-2

Figure A-1. Foreground Acquisition Front Panel... A-1
Figure A-2. Background Acquisition Front Panel.. A-3
Figure A-3. Triggered Acquisition Front Panel.. A-6
Figure A-4. Interval Scanning Front Panel... A-8
Figure A-5. Handshaking Front Panel .. A-10

© National Instruments Corporation 1-1 NI-DMM Software User Manual

1
Introduction

This chapter discusses how to use this manual, lists what you need to get
started, and presents a background of the NI-DMM software.

How to Use This Manual
Use this manual sequentially to learn how to set up a system to use National
Instruments DMM hardware through the NI-DMM driver and through the
NI-DAQ driver. Make sure you have all the components described in the
What You Need to Get Started section. Also, check the ReadmeDMM.htm
file installed with the instrument driver, which includes possible
last-minute changes and updates. Refer to the where to start document that
came with your hardware for instructions about setting up your system.

After you have set up your system, start with Chapter 2, Getting Started,
which contains some general overview material to introduce some of the
concepts used in the driver. Chapter 3, Introductory Programming
Examples Using Easy I/O and Application Functions, will familiarize you
with some simple examples. Chapter 4, NI-DMM Driver Application
Examples, and Chapter 5, NI-DAQ Driver Application Examples, contain
more in-depth information about the different elements that make up the
NI-DMM software and about the usage of the DMM device with the
NI-DAQ driver. Chapter 6, Build Your Own Application, suggests the
sequence of steps needed to implement a measurement application from
scratch.

In addition to the NI-DMM Software User Manual, you have the following
documentation to use as reference.

• DMM hardware user manual—This manual gives information about
the electrical and mechanical aspects and features of your National
Instruments DMM device.

• Online help—This electronic document (.hlp) gives detailed
information on the operations and attributes of NI-DMM.

• ReadmeDMM.htm—Check this file to see if there is any updated
information regarding the hardware and software kit.

Chapter 1 Introduction

NI-DMM Software User Manual 1-2 www.ni.com

What You Need to Get Started
The following items are needed to get started.

❑ Appropriate National Instruments hardware, such as the NI 4050 or
NI 4060 devices

❑ NI-DMM instrument driver software

Background
NI-DMM is designed to be an easy-to-use software interface to the line of
National Instruments digital multimeters (DMMs). This driver is based on
two industry standards for instrument drivers—VXIplug&play and
Interchangeable Virtual Instruments (IVI).

VXIplug&play
The VXIplug&play Systems Alliance was formed to solve some of the
remaining difficulties in integrating a VXI system. One of the most
important components the VXIplug&play Systems Alliance addressed was
that of the instrument driver. The VXIplug&play Systems Alliance created
a standard for instrument drivers and required any VXI device have such
an instrument driver to be VXIplug&play compliant. The NI-DMM
instrument driver follows this standard by providing an instrument driver
that conforms to the VXIplug&play standards.

IVI
In 1997, National Instruments promoted the creation of the IVI Foundation,
an open consortium of companies chartered with the purpose defining
software standards for interchangeable virtual instruments (IVI). As a
result, the IVI Foundation (www.ivifoundation.org) has introduced an
instrument driver model that is not only VXIplug&play compliant but also
extends functionality to include many new features, such as state-caching
and simulation modes, that users had requested. This architecture uses a
support driver, known as the IVI Engine, to handle many of the complex
features. The NI-DMM instrument driver is IVI compliant.

Note NI-DMM version 1.5 supports IVI-DMM Specification versions 1.0 and 2.0.
Portions of the IVI-DMM Specification version 1.0 are considered obsolete, and later
versions of NI-DMM will not support them. For more information about obsolete functions
and attributes, we encourage you to carefully read the ReadmeDMM.htm file.

© National Instruments Corporation 2-1 NI-DMM Software User Manual

2
Getting Started

This chapter contains an overview of NI-DMM, defines terms you need
to understand, and introduces the various operations defined by the
VXI plug&play specifications on instrument drivers. The operations
specified by these documents are standard across all VXIplug&play
instrument drivers.

In addition, this chapter presents information on other operations
unique to NI-DMM, and gives an overview of the main groups of
attributes. For a complete list of the operations and their parameters,
go toPrograms»National Instruments DMM»National Instruments
DMM Help .

For the latest versions of manuals, drivers, and examples, visit
www.ni.com/instruments for free downloads.

Introduction
NI-DMM is designed to be consistent with the VXIplug&play Systems
Alliance, VISA, and IVI technologies. These technologies have it possible
for several object-oriented concepts to exist in the API. NI-DMM has three
groups of information associated with it: session, attributes, and operations.

Sessions, or handles, are the unique identifiers of the object and are used to
communicate with the object. Sessions are similar to file I/O handles.

Attributes give information about the object. For example, attributes of a
car include its color, number of doors, and performance. Attributes of a
DMM device include the measurement function, the resolution, the range,
and the AutoZero setting. In addition, attributes can also control features of
the DMM such as the type of trigger, trigger sources, and trigger
destinations.

Operations are often called the verbs of the object because they describe
what the object can do. For example, a car’s operations include
accelerating, braking, and turning. Operations of a DMM card include
initialization, initiating a reading, fetching a reading, and closing.

Chapter 2 Getting Started

NI-DMM Software User Manual 2-2 www.ni.com

Session Communication
The NI-DMM driver is a scalable driver, which means it can talk to any
of the National Instruments DMMs such as the NI 4050 or NI 4060.
Therefore, when you want to use the driver, you must be able to uniquely
identify the appropriate hardware. You can identify the hardware through
Initialize , where you pass in a unique instrument descriptor of the
hardware. This descriptor gives the driver the physical address of the
hardware. The driver then returns a special handle (called an instrument
handle) to you that you will use whenever you want to perform an action
on this hardware. See Figure 2-1.

Figure 2-1. niDMM Initialize Block Diagram

status = niDMM_init("DAQ::1::INSTR", VI_TRUE, VI_TRUE, &instr);

This code opens communication with a DMM device with a device number
value of 1. The session is returned in the last parameter, in this case in the
variable instr .

As an alternative to Initialize , consider a similar
operation—Initialize With Options . This operation initializes the
driver into a state you specify using options you pass into the operation. For
example, you can operate the NI-DMM driver in simulation mode, in which
you can run programs without needing the DMM hardware to be connected
to the computer.

To open a session to the simulation driver, you would use Initialize

With Options as follows:

Figure 2-2. Initialize With Options Block Diagram

Chapter 2 Getting Started

© National Instruments Corporation 2-3 NI-DMM Software User Manual

niDMM_InitWithOptions ("DAQ::2::INSTR", VI_ON, VI_ON,

"Simulate=0,RangeCheck=1,QueryInstrStatus=1,Cache=1",

&instr);

Note Refer to the online help for a detailed explaination of the different attributes,
functions, and VIs.

To talk to the hardware, use this session as the first parameter of every
operation from then on. See Figure 2-3.

Figure 2-3. Session Block Diagram

Here is an example of opening a session with niDMM_init and passing the
session further to the next function:

niDMM_init(resourceName, idQuery, reset, &instr));

niDMM_SimpleAcquisition(instr, powerlineFreq, function,

range,measCompDest,triggerSource, triggerDelay,

handInit,numOfMeas, measurements);

Note You can have only one session open to a unique piece of hardware at a time.

Due to the advanced features of IVI, such as state-caching, you should not
have multiple sessions to—or multiple views of—the same hardware.
Therefore, if your application is multi-threaded, each thread shares the
same session. For protection between the threads, NI-DMM includes a set
of lock operations.

Chapter 2 Getting Started

NI-DMM Software User Manual 2-4 www.ni.com

Attributes
You can use attributes to get information about the state of the device or to
set the state of the device. For example, by retrieving an attribute from the
driver, you can determine whether the powerline frequency is set to 50 Hz
or 60 Hz, or you can set the source of a trigger.

Accessing Attributes
Accessing attributes in LabVIEW works slightly differently than for C and
Visual Basic. LabVIEW uses a feature known as the property node, which
is available in the Application Function control panel. A LabVIEW
programmer can use the property node to get and set multiple attributes at
the same time. You can access the attributes in LabVIEW only through the
property nodes, which display the list of possible attributes you can access.

C and Visual Basic users use special functions such as
niDMM_GetAttributeViInt32() and
niDMM_SetAttributeViBoolean() . In these languages, the attributes
themselves are identified by their names, which always start with
NIDMM_ATTR_. The following examples show how to get and set attributes
in LabVIEW and C:

Figure 2-4. Set Auto Zero Block Diagram

status = niDMM_SetAttributeViInt32 (instr, "", NIDMM_ATTR_AUTOZERO,

&attrVal);

or

Chapter 2 Getting Started

© National Instruments Corporation 2-5 NI-DMM Software User Manual

Figure 2-5. Set Powerline Block Diagram

niDMM_SetAttributeViInt32(instr, "", NIDMM_ATTR_POWERLINE_FREQ,

NIDMM_VAL_50_HERTZ);

These two operations also point out two other special features of the
attribute operations. First, notice that the C operations take the data type
of the attribute as part of the name. Therefore, each data type (Boolean,
integer, and so on) has a unique function. Second, notice that in LabVIEW
you can use the LabVIEW to IVI conversion VIs for passing attribute
values.

Attribute Functionality
The NI-DMM online help fully describes all of the attributes for the
NI-DMM driver. However, review this section for a general overview of
the main groups, so you can better understand what information and control
is available through the attributes.

Read-Only State Attributes
The first group of attributes is the read-only state attributes. A programmer
can use these attributes to query the DMM device for basic information.
Read-only state attributes make it possible for a program to be scalable
across different boards because the program is able to configure itself
depending on the actual hardware present (such as number of channels).
Examples of read-only state attributes in the NI-DMM driver are as
follows:

NIDMM_ATTR_NUM_CHANNELS

NIDMM_ATTR_AUTO_RANGE_VALUE

Chapter 2 Getting Started

NI-DMM Software User Manual 2-6 www.ni.com

Other attributes are the read-write (R/W) type and contain specifications
for the board such as fundamental capabilities (for example, function,
resolution, and range), or extended functionality (for example,
measurement complete, sample count, and sample interval).

NIDMM_ATTR_FUNCTION

NIDMM_ATTR_RESOLUTION

NIDMM_ATTR_AUTO_RANGE

NIDMM_ATTR_TRIGGER_SOURCE

NIDMM_ATTR_TRIGGER_DELAY

NIDMM_ATTR_AC_MIN_FREQ

NIDMM_ATTR_AC_MAX_FREQ

NIDMM_ATTR_SAMPLE_TRIGGER

NIDMM_ATTR_SAMPLE_INTERVAL

NIDMM_ATTR_TRIGGER_COUNT

NIDMM_ATTR_MEAS_COMPLETE_DEST

NIDMM_ATTR_POWERLINE_FREQ

NIDMM_ATTR_TRIGGER_SLOPE

Operations
An operation is another name for a VI in LabVIEW or a function in C or
Visual Basic. These operations give you full access to the NI-DMM driver,
including access to attributes (through the get and set operations) for C
and Visual Basic users. Remember, in LabVIEW you use attribute nodes to
access attributes. Consult the online help for more information on
NI-DMM operations.

Overview of VXIplug&play Required Operations

Initialize and Close
As described earlier in this chapter, the central component to
communicating with the driver and hardware is the session. Use
Initialize and Close in your program to create and destroy the session,
respectively. In addition, Initialize can require a verification that the
address actually corresponds to the correct hardware, and can perform a
complete reset on the board.

Reset
In Initialize , the program can order a board reset. However, you can
achieve the same functionality through the Reset operation. In both cases,
the reset causes the board to return to its powered-on state.

Chapter 2 Getting Started

© National Instruments Corporation 2-7 NI-DMM Software User Manual

Self Test
The Self Test operation is designed to verify that the board is
operational. The level of this verification depends on what information the
driver can obtain about the board. In general, the NI-DMM driver can
verify that the board is responding and that the driver can access the
registers of the hardware.

Error Query and Error Message
All operations return status information that indicates whether the
operation executed successfully. However, you can use the Error Query
operation to retrieve the status code returned by the last operation called.
Error Message translates an NI-DMM status code into human-readable
text, which can be displayed via a dialog box.

Revision Query
Revision Query returns the revision of the instrument driver, in this case
the revision of NI-DMM, as well as the firmware revision.

© National Instruments Corporation 3-1 NI-DMM Software User Manual

3
Introductory Programming
Examples Using Easy I/O
and Application Functions

This chapter contains examples that use NI-DMM to explore some of the
basic functionality of your DMM hardware. The purpose of these examples
is to introduce the programming concepts and to familiarize you with the
instrument driver. Subsequent chapters describe these concepts in more
detail. The examples in the chapters of this manual use LabVIEW and
C source code, which you can use in the National Instruments LabVIEW,
LabWindows/CVI, and Microsoft Visual C++ programming environments.
The NI-DMM driver also works with Microsoft Visual Basic for
Windows NT/98/95 programming environments. You can find equivalent
examples for this environment in Appendix A, Microsoft Visual Basic
Examples. The program shown in Example 3-1 is relatively simple. Later
examples in this chapter build on the first example by repeating its basic
structure and introducing additional features.

This manual uses a special font and naming convention for VI or function
calls. For example, the term Initialize , when shown with this font,
refers both to the LabVIEW VI, niDMM Initialize.vi , and to the
C function, niDMM_Init () , shown in Figure 3-1.

You can find these VIs and functions as follows:

• LabVIEW—Instrument Drivers palette, inside the NI-DMM submenu

• LabWindows/CVI—load the intrument driver front panels
(nidmm.fp), which are located in VXIpnp/win95/NIDMM

Note All examples are shown first as a LabVIEW VI then in C code.

Chapter 3 Introductory Programming Examples Using Easy I/O and Application Functions

NI-DMM Software User Manual 3-2 www.ni.com

Figure 3-1. niDMM Initialize Block Diagram

niDMM_init(instr, idQuery, reset, handle) ;

Basic Startup
The NI-DMM application-programming interface (API) uses standard
initialization and close routines at the beginning and end of the program.
The initialization routine reserves computer resources for your DMM and
creates a unique instrument handler (used by your program) to identify the
DMM you are programming. Example 3-1 and Figure 3-2 show how to get
a handle to the instrument and retrieve information about the state of the
hardware.

Example 3-1. Initialization

Figure 3-2. Initialize Example Block Diagram
int main (void)

{

ViSession vi; /* Communication Channel */

ViStatus status; /* For checking errors */

ViChar firmRev[256]; /* Strings for revision info */

ViChar driverRev[256];

/* Begin by opening a communication channel to the instrument */

checkErr(nidmm_init("DAQ::1::INSTR", VI_TRUE, VI_TRUE, &vi));

Chapter 3 Introductory Programming Examples Using Easy I/O and Application Functions

© National Instruments Corporation 3-3 NI-DMM Software User Manual

checkErr(niDMM_revision_query (vi , driverRev,firmRev);

Error:

if (vi)

niDMM_close(vi);

if (error < VI_SUCCESS)

messageHandler(error);

}

void _VI_FUNC messageHandler(ViStatus error)

{

ViChar errorMessage[256] = "";

/*- Get the error description ---------------*/

niDMM_error_message(VI_NULL, error, errorMessage);

/*- Display the error message ----------------*/

#ifdef _CVI_

MessagePopup ("Error", errorMessage);

#else

MessageBox(NULL, errorMessage, "Error", MB_OK | MB_ICONERROR);

#endif

}

Note: checkErr is an IVI.h declared macro, as follows:

ifndef checkErr

#define checkErr(fCall)

if (error = (fCall), (error = (error < 0) ? error : VI_SUCCESS)) {goto

Error;} else

#endif

Discussion
Example 3-1 breaks down into the following steps:

1. Open a communication channel to the device by using Initialize .
Specify the address of the device you want to talk to through a
VISA-style resource string. An example of a VISA-style resource
string is DAQ::n::INSTR , where n is the device number you assigned
to the instrument.

Note For more detailed information on how to set a device number, refer to your DMM’s
Where to Start document.

Chapter 3 Introductory Programming Examples Using Easy I/O and Application Functions

NI-DMM Software User Manual 3-4 www.ni.com

To use an analogy of telephone communication, this step compares to
dialing a phone number. The operation places the call and connects
you.

The variable returned—VI —is a session, or communication channel.
This session represents the connection to the other person on the
phone. In this case, the connection is to the actual DMM hardware.

Note This operation is taken directly from the VXIplug&play specifications.

2. After successfully establishing a communication channel, you are
ready to perform some action. In this example, you query the driver to
check the revision of the driver.

3. At this point, you are done with this example. To finish the
communication, you need to close the session. Closing the session will
free up computer resources that were reserved with the
Initialize.vi or function.

Example 3-2. Measuring DC Volts with the NI-DMM
Example 3-2 shows how to measure DC volts using the NI-DMM
instrument driver. For this example, assume you have an NI-DMM device
in your computer, your signal is connected to the top terminal pair, and you
want to measure a DC volts signal.

If you are using LabVIEW, open the niDMM Easy IO Simple Acq.vi
example, located in the niDMM Instrument Driver»niDMM»
Examples»Easy IO subpalette.

Chapter 3 Introductory Programming Examples Using Easy I/O and Application Functions

© National Instruments Corporation 3-5 NI-DMM Software User Manual

Figure 3-3. niDMM Easy IO Simple Acquisition Front Panel

Figure 3-4. niDMM Easy IO Simple Acquisition Block Diagram

If you are using LabWindows/CVI or C programming, open the
simplAcq.prj project, located in the VXIPnP/Win95/niDMM/

Examples/cvi directory.

Chapter 3 Introductory Programming Examples Using Easy I/O and Application Functions

NI-DMM Software User Manual 3-6 www.ni.com

void main(void)

{

ViStatus error = VI_SUCCESS;

ViSession vi = VI_NULL;

ViString resourceName = "DAQ::1::INSTR";

ViBoolean idQuery = VI_TRUE;

ViBoolean reset = VI_TRUE;

ViReal64 powerlineFreq = NIDMM_VAL_60_HERTZ;

ViReal64 resolution = 0.00001;

ViInt32 function = NIDMM_VAL_DC_VOLTS;

ViReal64 range = 2.00;

ViInt32 autoZero = NIDMM_VAL_AUTO_ZERO_OFF;

ViInt32 numOfMeas = 4;

ViReal64 measurements[4];
checkErr(niDMM_init(resourceName, idQuery, reset, &vi));

checkErr(niDMM_SimpleAcquisition(vi, powerlineFreq, function,

range,resolution, autoZero, numOfMeas, measurements));

Error:

if (vi)

niDMM_close(vi);

if (error < VI_SUCCESS)

messageHandler(error);

}

Note A complete list of supported features for your DMM is listed in your DMM’s user
manual in the Specifications appendix.

Prior to measuring, you need to configure the hardware by setting your
front panel controls as follows:

1. Instrument—This input control contains the resource name of the
device to initialize. Valid Syntax: "DAQ::device

number[::INSTR]" . Set Instrument to DAQ::1::INSTR , if your
DMM was assigned deviceID 1 in Measurement & Automation
Explorer.

Note To find the device number you assigned to your DMM, double-click the
Measurement & Automation Explorer icon on your PC desktop, then click on Devices
and Interfaces.

2. Function—The NI-DMM can perform many different measurement
functions such as DC/AC voltage, DC/AC current, 2-wire/4-wire
resistance, and diode measurements. Set Function to DC Volts.

Chapter 3 Introductory Programming Examples Using Easy I/O and Application Functions

© National Instruments Corporation 3-7 NI-DMM Software User Manual

3. Range—The NI-DMM has several input ranges available for
measuring DC voltages. Set Range to the range input value that best
accommodates your measurement.

4. Resolution—The NI-DMM has programmable resolution. Set the
resolution to the absolute units you want (for example, 1, 0.1, 0.001,
0.00001, and so on). Note that you can calculate your digits of
precision by using the formula:

digits = log10(range/absolute units)

5. Powerline Frequency—The NI-DMM hardware uses a digital filter
that heavily rejects power line frequencies at 50 Hz and/or 60 Hz and
their harmonics, as well as high-frequency noise. Set Powerline
Frequency to 60 Hz.

6. Number of Measurements—This control represents the number of
points the DMM reads. Set Number of Measurements to 4.

7. Auto Zero—When auto zeroing is on, the DMM internally
disconnects the input signal following each measurement and takes a
zero reading. The DMM then subtracts the zero reading from the
preceding reading. This prevents offset voltages present on the DMM’s
input circuitry from affecting measurement accuracy. When auto
zeroing is off, the DMM does not compensate for zero reading offset.
Set Auto Zero to Off.

After you configure the hardware, run niDMM Easy IO Simple Acq.vi ,
or SimplAcq.prj in C.

8. Measurements—Measurement data is shown in the Measurements
indicator.

Discussion
Example 3-2 breaks down into the following steps:

1. Open a communication channel to the device by using Initialize .
You specify the address of the device you want to talk to through a
VISA-style resource string (DAQ::n::INSTR , where n is the device
number).

2. After successfully establishing a communication channel, you are
ready to perform some action. In this example, you call the niDMM

Simple Acquisition function, which executes and returns with the
data points specified in Number of Measurements.

3. After the Number of Measurements data points are acquired, the
function returns, and you are done with this example. To finish the
communication, you need to close the session.

Chapter 3 Introductory Programming Examples Using Easy I/O and Application Functions

NI-DMM Software User Manual 3-8 www.ni.com

Measuring AC Volts with the NI-DMM
In the AC voltage ranges, the NI-DMM hardware measures the root mean
squared (rms) value of a signal. Example 3-2 can also be used to measure
AC volts with the NI-DMM hardware. Assume you have an NI-DMM
device in your computer, your signal is connected to the top terminal pair,
and you want to measure an AC volts signal. Set your front panel controls
as follows:

• Function—Set Function to AC Volts.

• Range—The NI-DMM hardware has several input ranges available for
measuring AC voltages. Set Range to the range input value that best
accommodates your measurement.

• Frequency—The default frequency range for AC volts measurement
is 20.0–25000.0 Hz. This example does not have a frequency input
control on the panel. Look inside its diagram; open niDMM Simple

Acquisition.vi by double-clicking on the VI icon; and then open
niDMM ConfigureACBandwidth.vi by double-clicking on the icon
in the niDMM Simple Acquisition.vi block diagram. You will see
that this lower level configuration VI has two controls: one for the
Minimum Frequency with the default value set to 20 Hz, and one for
the Maximum Frequency with the default value set to 25000 Hz.
These values specify the frequency band in which your AC signal may
reside. If the default values are not valid for your signal, change these
values appropriately.

Measuring Resistance with the NI-DMM
Example 3-2 can be used to measure 2-wire and 4-wire resistance with the
NI-DMM device. The NI-DMM hardware measures 2-wire resistance by
passing a current through the device under test and reading the resulting
voltage drop through the same connections.

The 4-wire resistance measurement works in a similar manner as the 2-wire
resistance measurement. The difference is that in the 4-wire resistance
measurement, separate leads are used for the current excitation and for the
voltage sense. This method allows greater accuracy for low value resistance
measurement.

Chapter 3 Introductory Programming Examples Using Easy I/O and Application Functions

© National Instruments Corporation 3-9 NI-DMM Software User Manual

Assume you have an NI-DMM device in your computer, and your signal is
connected appropriately to the DMM terminals in either the 2-wire or
4-wire resistance measurement configuration. Set your front panel controls
to the following:

• Function—Set Function to 2-wire or 4-wire resistance.

• Range—The NI-DMM has several input ranges available for 2-wire or
4-wire measurements. Refer to your DMM’s User Manual
Specifications section for a complete listing of ranges.

• Resolution—Enter the appropriate resolution that best fits the
resistance meaurement you want to take.

Measuring Current with the NI-DMM
Example 3-2 can be used to measure DC/AC current with the NI-DMM.

Assume you have an NI-DMM device in your computer, your signal is
connected to the bottom terminal pair, and you want to measure DC/AC
current. Set your front panel controls as follows:

• Function—Set Function to DC current or AC current.

• Range—The NI-DMM has several input ranges for current
measurements. Set Range to the input range value that best
accommodates your signal.

Testing Diodes with the NI-DMM
Example 3-2 can be used to measure a diode with the NI-DMM.
The NI-DMM can measure the forward voltage of a diode. For this
measurement, the diode is biased with a current, and the voltage drop
across the diode is measured and returned.

Assume you have an NI-DMM device in your computer, your diode is
connected to the top terminal pair, and you want to measure this diode.
Set your front panel controls as shown in Example 3-2 with the following
exception:

• Function—Set Function to Diode.

Note The diode measurements are made with a fixed range of 2 V.

© National Instruments Corporation 4-1 NI-DMM Software User Manual

4
NI-DMM Driver Application
Examples

This chapter describes the classes of functions in NI-DMM and briefly
describes each function. Figure 4-1 shows the acquisition model
implemented by the NI-DMM instrument driver.

Figure 4-1. Acquisition Model Flowchart

Idle
State

Wait-For-
Trigger State

Triggers equal to
Trigger Count

Delay

Wait-For-
Sample-Trigger

State

No

Measurements
equal to

Sample Count

Measurement
Complete

Take
Measurement

No

Yes

Yes

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-2 www.ni.com

NI-DMM functions are grouped according to the following classes:

• Examples
– niDMM Getting Started

– niDMM Easy IO Simple Acq

– niDMM Easy IO Trigger Acq

– niDMM Easy IO Scanning Acq

– niDMM Easy IO Advanced Acq

– niDMM Easy IO Interval Scanning Acq

• Open
– Initialize

– Initialize with Options

• Application Functions

– niDMM Simple Acquisition

– niDMM Triggered Acquisition

– niDMM Advanced Acquisition

– niDMM Scanning Acquisition

– niDMM Interval Scanning Acquisition

• Measure
– niDMM Measure

– niDMM Measure Multi Point

• Configure

– niDMM Configure Measurement

– niDMM Configure Multi Point

• Read

– niDMM Read

– niDMM Read Multi Point

• Control

– niDMM Initiate

– niDMM Abort

• Fetch

– niDMM Fetch

– niDMM Fetch Multi Point

• Low-Level Measure

– niDMM Send Software Trigger

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-3 NI-DMM Software User Manual

– niDMM Configure Trigger

– niDMM Configure Powerline Frequency

– niDMM Configure AC Bandwidth

– niDMM Configure Meas Complete Dest

– niDMM Configure Meas Complete Slope

– niDMM Configure Trigger Slope

– niDMM Configure Sample Trigger Slope

– niDMM Configure Sample Delay Mode

– niDMM Configure Auto Zero Mode

– niDMM Get Digits of Precision

– niDMM Is Over Range

• Obsolete

– niDMM Configure

– niDMM Set Powerline Frequency

– niDMM Configure Start Trigger

– niDMM Configure Measurement Complete

– niDMM Set Trigger Slope

– niDMM Set Auto Zero

– niDMM Format Measurements

• Utility
– niDMM Reset

– niDMM Self Test

– niDMM Error Message

– niDMM Error Query

– niDMM Revision Query

– niDMM Format Measurements Absolute

– niDMM Read Status

• Error Info
– niDMM Get Error Info

– niDMM Clear Error Info

– niDMM Error Handler

• Capabilities
– niDMM Calculate Accuracy

– niDMM Get Measurement period

– niDMM Geet Auto Range Value

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-4 www.ni.com

• Close
– niDMM Close

Note Lock and Unlock cannot be used in the LabVIEW environment.

Examples
Examples are simple applications that initialize the instrument, call an
application function to configure measurement parameters, initiate the
measurement, wait until the DMM has returned to the idle state, return the
measured values, close the instrument session, and check for error.

For example, in the niDMM Easy IO Simple Acq.vi , Initialize
generates a session that goes into niDMM Simple Acquisition.vi
where the hardware is configured, acquisition is initiated, and data is
retrieved. niDMM Close is called to terminate the session and to bring the
instrument to its idle state.

To access this example, open niDMM Easy IO Simple Acq.vi located
in the Examples folder of the NI-DMM driver.

Figure 4-2. Easy I/O Simple Acquisition Block Diagram

Examples give immediate access to the DMM functionality. If your
application does not require other configurations or other acquisition
techniques than those covered by the examples, then you should use them
directly as your application, or if your application requires other
configuations, you can use them as a starting point in building your
application.

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-5 NI-DMM Software User Manual

Initialize and Close Functions
Initialize functions create a new IVI instrument driver session and open a
session to the specified device using the device you specify for the
Resource Name parameter. If the ID Query parameter is set to TRUE,
Initialize functions query the instrument ID and check that it is valid for this
instrument driver. If the Reset parameter is set to TRUE, Open functions
reset the instrument to a known state.

Initialize functions send initialization commands to set the instrument to
the state necessary for instrument driver operation; they also return a VI
session handle that you use to identify the instrument in all subsequent
instrument driver function calls.

Note Initialize functions create a new session each time you invoke them. Although,
theoretically, you can open more than one IVI session for the same resource, as previously
mentioned, it is best not to do so. You can use the same session in multiple program threads.
You can use LockSession and UnlockSession VIs to protect sections of code that
require exclusive access to the resource.

The close function closes the specified session and deallocates the
resources that it occupied.

/* Open DMM */

status = niDMM_init("DAQ::16::INSTR", VI_TRUE, VI_TRUE, &instr);

/* Close DMM */

status = niDMM_close(instr);

Application Functions
Application functions are NI-DMM functions that configure the hardware
for a certain type of acquisition (simple, triggered, scanning, and
advanced), initiate the acquisition, wait until the DMM has returned to the
idle state, and return the measured values.

If you want to build an application using application functions, you need
to first initialize the device by calling Init or InitWithOptions and
then close the session with Close . If you wish to configure additional
parameters in your application, you can do so by calling SetAttribute or
other configuration VIs in the driver library before calling the application
function and after calling Init . The niDMM Easy IO Simple Acq.vi

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-6 www.ni.com

is an example of how to use an application function like niDMM Simple

Acquisition .

Figure 4-3. Simple Acquisition Block Diagram

void main(void)

{

 ViStatus error = VI_SUCCESS;

 ViSession vi = VI_NULL;

 ViString resourceName = "DAQ::1::INSTR";

 ViBoolean idQuery = VI_TRUE;

 ViBoolean reset = VI_TRUE;

 ViReal64 powerlineFreq = NIDMM_VAL_60_HERTZ;

 ViReal64 resolution = 0.01;

 ViInt32 function = NIDMM_VAL_DC_VOLTS;

 ViReal64 range = 2.00;

 ViInt32 autoZero = NIDMM_VAL_AUTO_ZERO_OFF;

 ViInt32 numOfMeas = 4;

 ViReal64 measurements[4];

checkErr(niDMM_init(resourceName, idQuery, reset, &vi));

error = niDMM_SimpleAcquisition (vi, powerlineFreq, function, range,

resolution, autoZero, numOfMeas, measurements);

Error:

if (vi)

niDMM_close(vi);

if (error < VI_SUCCESS)

messageHandler(error);

}

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-7 NI-DMM Software User Manual

Advanced Programming Using Low-Level Functions
Functions like niDMM Simple Acquisition are themselves made of
lower level specialized functions, which configure the hardware, read one
or several data points, or initiate acquisition and fetch one or several
readings into the RAM buffer.

These functions are not visible at the Application Functions level, but
certainly—as lower level functions—are part of the driver; you may use
them if your application so requires. After configuring the DMM, you can
choose to implement the acquisition in the foreground or in the background
of your application.

Background Acquisition
A background acquisition will initiate the data acquisition process and
return to the next function caller immediately. This process is implemented
in NI-DMM by using the sequence of calls, niDMM Initiate/niDMM

Fetch .

The practical result of this programming method is that after executing
niDMM Initiate , the control is returned immediately to your program
while, in the background, the DMM is acquiring data, converting it into
digital format, and sending it to your computer’s RAM memory.

In order to configure a continuous acquisition, you need to set Sample
Count to 0 in niDMM Configure Multi Point . In this case, the
acquisition process will continue until niDMM Abort is called. If you set
Sample Count—in niDMM ConfigureMultipoint —to a finite number
N, your acquisition will stop after N points have been acquired. The sample
count is the total number of measurements you want the DMM to perform.
The following example shows how to implement a continuous background
acquisition.

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-8 www.ni.com

Figure 4-4. Background Acquisition Front Panel

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-9 NI-DMM Software User Manual

Figure 4-5. Background Acquisition Block Diagram

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-10 www.ni.com

void main(void)

 {

 ViStatus error = VI_SUCCESS;

 ViSession vi = VI_NULL;

 ViString resourceName = "DAQ::1::INSTR";

 ViBoolean idQuery = VI_TRUE;

 ViBoolean reset = VI_TRUE;

 ViReal64 powerlineFreq = NIDMM_VAL_60_HERTZ;

 ViInt32 function = NIDMM_VAL_DC_VOLTS;

 ViReal64 range = 25.00;

 ViInt32 numOfMeas = 10;

 ViReal64 measurements[10];

 ViReal64 resolution = 0.001;

 ViInt32 i;

 ViInt32 numPointsRead;

 checkErr(niDMM_init(resourceName, idQuery, reset, &vi));

 /*- Configure Powerline frequency--------------------------------------*/

 checkErr(niDMM_ConfigurePowerlineFrequency(vi, powerlineFreq));

 /*- Call NIDMM_ConfigureMeasurement() to set function, range and res---*/

 checkErr(niDMM_ConfigureMeasurement(vi, function, range, resolution));

 /*- Configure a multipoint acquisition---------------------------------*/

 checkErr(niDMM_ConfigureMultiPoint(vi, 1, numOfMeas, NIDMM_VAL_IMMEDIATE,

0.0));

 /*- Start or initiate the acquisition-----------------------------------*/

 checkErr(niDMM_Initiate(vi));

 /*- Fetch the data---*/

 checkErr(niDMM_FetchMultiPoint(vi, NIDMM_VAL_TIME_LIMIT_AUTO, numOfMeas,

measurements, &numPointsRead));

 for (i=0;i<10;i++)

printf("measurements[%d] = %f \n", i, measurements[i]);

 printf("\n\n");

 Error:

 if (vi)

 niDMM_close(vi);

 if (error < VI_SUCCESS)

 messageHandler(error);

 }

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-11 NI-DMM Software User Manual

This previous example is using a sequence of low-level NI-DMM driver
functions to implement the following functionality:

1. Open a session on the device described by the instrument descriptor.

2. Configure the measurement.

3. Configure powerline frequency.

4. Configure trigger.

5. Configure a multipoint acquisition. Set the sample count, which
represents the number of points to acquire. If sample count is set to 0,
this configures for a continuous acquisition operation, which
eventually will be turned off by using the abort function.

6. Get the measurement period to determine how much time in
milliseconds a single measurement point takes. You can use this
number to specify the timeout value in the Fetch function as an
alternative to using the auto time limit value to wait between
consecutive readings (in Fetch).

7. Initiate the acquisition. niDMM Initiate starts a background
acquisition process and returns to the function caller immediately.

8. Start fetching four points at a time inside a while loop.

9. Go out of the while loop when the Stop button is pressed (LabVIEW
example), or any key is hit (C code).

10. Abort continuous acquisition (LabVIEW example).

11. Close the session.

12. Check for errors.

GetMeasurementPeriod calculates the period of time it takes to make
one measurement in hardware, as a function of powerline frequency,
resolution, and range. Each of the niDMM Fetch calls, returns data from
an ongoing acquisition (without interrupting the acquisition), and transfers
the last acquired data point from the acquisition buffer into the read buffer
for further processing.

If Fetch does not complete within the timeout period given by the
maximum time input control, the function returns the
MAX_TIME_EXCEEDED error code. When this error occurs, you can call
Abort to cancel the measure operation and Close to return the instrument
to the idle state. Current implementation of the NI-DMM driver provides a
way of monitoring the data acquisition in progress. Basically, you are
retrieving data with niDMM Fetch in two ways:

• When you are ready to do so

• When data is available by calling niDMM Read Status

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-12 www.ni.com

Foreground Acquisition
The sequence of calls used above will start the acquisition once, then read
data, inside a loop, while data is acquired. A foreground acquisition
function, like niDMM_Read, will not return until the NI-DMM has acquired
the data you requested. niDMM_Read initiates an acquisition (of 1 or N
points), stops the acquisition, reads the acquired data (1 or N points), and
returns to the next function caller.

Figure 4-6. Foreground Acquisition Front Panel

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-13 NI-DMM Software User Manual

Figure 4-7. Foreground Acquisition Block Diagram

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-14 www.ni.com

void main(void)

 {

 ViStatus error = VI_SUCCESS;

 ViSession vi = VI_NULL;

 ViString resourceName = "DAQ::1::INSTR";

 ViBoolean idQuery = VI_TRUE;

 ViBoolean reset = VI_TRUE;

 ViReal64 powerlineFreq = NIDMM_VAL_60_HERTZ;

 ViInt32 function = NIDMM_VAL_DC_VOLTS;

 ViReal64 range = 25.00;

 ViInt32 numOfMeas = 10;

 ViReal64 measurements[10];

 ViReal64 resolution = 0.001;

 ViInt32 i;

 ViInt32 numPointsRead;

 ViReal64 reading;

 checkErr(niDMM_init(resourceName, idQuery, reset, &vi));

 /*- Configure the powerline frequency----------------------------------*/

 checkErr(niDMM_ConfigurePowerlineFrequency(vi, powerlineFreq));

 /*- Call NIDMM_ConfigureMeasurement() to set function, range and res---*/

 checkErr(niDMM_ConfigureMeasurement(vi, function, range, resolution));

 /*- Configure a multipoint acquisition---------------------------------*/

 checkErr(niDMM_ConfigureMultiPoint(vi, 1, numOfMeas, NIDMM_VAL_IMMEDIATE,

0.0));

 /*- Read measurements using ReadMultiPoint()---------------------------*/

 checkErr(niDMM_ReadMultiPoint (vi, NIDMM_VAL_TIME_LIMIT_AUTO, numOfMeas,

measurements, &numPointsRead));

 for (i=0;i<10;i++)

printf("measurements[%d] = %f \n", i, measurements[i]);

 printf("\n\n");

 Error:

 if (vi)

 niDMM_close(vi);

 if (error < VI_SUCCESS)

 messageHandler(error);

 }

In the Background Acquisition section, GetMeasurementPeriod
calculated the period of time it takes to make one measurement. In this
example, the GetMeasurementPeriod call is removed, and instead the
maximum length of time in which to allow the measure operation to
complete using the auto time limit read value is passed

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-15 NI-DMM Software User Manual

to niDMM_ReadMultiPoint . If the measurement operation does not
complete within this time interval, the niDMM_ReadMultiPoint function
returns the MAX_TIME_EXCEEDED error code.

Triggered Acquisition
The DMM hardware can be configured to:

• self trigger its measurements based on an internal clock

• perform its measurements based on an externally provided trigger

Note The triggering features shown in this section do not apply to the NI 4050 for
PCMCIA.

If the DMM is configured for external trigger, a pulse received on the EXT
TRIG IN line, or one of the TTL lines, will trigger a measurement
operation. The DMM has two types of triggers: Trigger and Sample
Trigger .

A Trigger is an edge-triggered signal that initiates a data acquisition
sequence, which is a collection of samples (A/D conversions). A Sample

Trigger is a signal that causes an A/D conversion to be initiated. Both
Trigger and Sample Trigger can be generated externally or internally.
The NI-DMM instrument driver is implementing two types of trigger
pulses:

• Immediate (or internal)

• External

– Applied on the EXT TRIG IN line

– Applied on a PXI TTL line (0-6)

The NI-DMM instrument driver is implementing the following types of
Sample Trigger sources:

• Immediate (or internal)

• External

– Applied on a PXI TTL line (0-6)

• Interval

• Software

If Sample Trigger is set to Interval, the DMM is configured for interval
scanning using the sample interval control (real number in seconds) as scan
interval. If Sample Trigger is set to software, the DMM is configured to
acquire one sample every time a Send Software Trigger call is issued.

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-16 www.ni.com

The following permutations of sources for Trigger/Sample Trigger
pulses apply:

• Immediate Trigger , immediate Sample Trigger

• External Trigger , immediate Sample Trigger

Figure 4-8. Trigger with Internal Sample Trigger Front Panel

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-17 NI-DMM Software User Manual

Figure 4-9. Trigger with Internal Sample Trigger Block Diagram

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-18 www.ni.com

void main(void)

 {

 ViStatus error = VI_SUCCESS;

 ViSession vi = VI_NULL;

 ViString resourceName = "DAQ::1::INSTR";

 ViBoolean idQuery = VI_TRUE;

 ViBoolean reset = VI_TRUE;

 ViReal64 powerlineFreq = NIDMM_VAL_60_HERTZ;

 ViInt32 function = NIDMM_VAL_DC_VOLTS;

 ViReal64 range = 25.00;

 ViInt32 TrigSource = NIDMM_VAL_IMMEDIATE ;

 ViInt32 TrigSlope = NIDMM_VAL_POS;

 ViInt32 SampleTrigSource = NIDMM_VAL_IMMEDIATE;

 ViInt32 SampleTrigSlope = NIDMM_VAL_POS;

 ViInt32 numOfMeas = 10;

 ViReal64 measurements[10];

 ViReal64 resolution = 0.001;

 ViInt32 i, timeLimit;

 ViInt32 numPointsRead;

 checkErr(niDMM_init(resourceName, idQuery, reset, &vi));

 /*- Calculate time limit--*/

 timeLimit = 3000;

 /*- Configure Powerline frequency--------------------------------------*/

 checkErr(niDMM_ConfigurePowerlineFrequency(vi, powerlineFreq));

 /*- Call NIDMM_ConfigureMeasurement() to set function, range and res---*/

 checkErr(niDMM_ConfigureMeasurement(vi, function, range, resolution));

 /*- Set Trigger Source and Trigger Delay-------------------------------*/

 checkErr(niDMM_ConfigureTrigger (vi, TrigSource, 0.0));

 /*- Set Trigger Slope--*/

 checkErr(niDMM_ConfigureTriggerSlope (vi, TrigSlope));

 /*- Configure a multipoint acquisition---------------------------------*/

 checkErr(niDMM_ConfigureMultiPoint(vi, 1, numOfMeas, SampleTrigSource,

0.0));

 /*- Set Sample Trigger Slope---*/

 checkErr(niDMM_ConfigureSampleTriggerSlope (vi, SampleTrigSlope));

 /*- Read measurements using NIDMM_ReadMultiPoint()---------------------*/

 checkErr(niDMM_ReadMultiPoint(vi, timeLimit, numOfMeas, measurements,

&numPointsRead));

 for (i=0;i<10;i++)

printf("measurements[%d] = %f \n", i, measurements[i]);

 printf("\n\n");

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-19 NI-DMM Software User Manual

 Error:

 if (vi)

 niDMM_close(vi);

 if (error < VI_SUCCESS)

 messageHandler(error);

 }

Use the niDMM Configure Trigger and niDMM Configure Trigger

Slope functions to implement a trigger. Specify the trigger source delay
and slope. If you set Trigger Source to External on the panel, then you
need to connect a TTL signal to the EXT TRIG IN line. When the NI-DMM
receives this pulse, it starts to take Sample Trigger Count number of
measurements.

If the trigger pulse does not arrive during the next time limit number of
milliseconds, the error message “Max Time exceeded before the

operation completed” appears.

Other permutations of sources for Trigger/Sample Trigger pulses are as
follows:

• External Trigger, External Sample Trigger

• Internal Trigger, External Sample Trigger

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-20 www.ni.com

Figure 4-10. Trigger with External Sample Trigger Front Panel

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-21 NI-DMM Software User Manual

Figure 4-11. Trigger with External Sample Trigger Block Diagram

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-22 www.ni.com

void main(void)

 {

 ViStatus error = VI_SUCCESS;

 ViSession vi = VI_NULL;

 ViString resourceName = "DAQ::1::INSTR";

 ViBoolean idQuery = VI_TRUE;

 ViBoolean reset = VI_TRUE;

 ViReal64 powerlineFreq = NIDMM_VAL_60_HERTZ;

 ViInt32 function = NIDMM_VAL_DC_VOLTS;

 ViReal64 range = 25.00;

 ViInt32 TrigSource = NIDMM_VAL_EXTERNAL ;

 ViInt32 TrigSlope = NIDMM_VAL_POS;

 ViInt32 SampleTrigSource = NIDMM_VAL_EXTERNAL;

 ViInt32 SampleTrigSlope = NIDMM_VAL_POS;

 ViInt32 numOfMeas = 10;

 ViReal64 measurements[10];

 ViReal64 resolution = 0.001;

 ViInt32 i, timeLimit;

 ViInt32 numPointsRead;

 checkErr(niDMM_init(resourceName, idQuery, reset, &vi));

 /*- Calculate time limit--*/

 timeLimit = 3000;

 /*- Configure Powerline frequency--------------------------------------*/

 checkErr(niDMM_ConfigurePowerlineFrequency(vi, powerlineFreq));

 /*- Call NIDMM_ConfigureMeasurement() to set function, range and res---*/

 checkErr(niDMM_ConfigureMeasurement(vi, function, range, resolution));

 /*- Set Trigger Source and Trigger Delay-------------------------------*/

 checkErr(niDMM_ConfigureTrigger (vi, TrigSource, 0.0));

 /*- Set Trigger Slope--*/

 checkErr(niDMM_ConfigureTriggerSlope (vi, TrigSlope));

 /*- Configure a multipoint acquisition---------------------------------*/

 checkErr(niDMM_ConfigureMultiPoint(vi, 1, numOfMeas, SampleTrigSource,

0.0));

 /*- Set Sample Trigger Slope---*/

 checkErr(niDMM_ConfigureSampleTriggerSlope (vi, SampleTrigSlope));

 /*- Read measurements using NIDMM_ReadMultiPoint()---------------------*/

 checkErr(niDMM_ReadMultiPoint(vi, timeLimit, numOfMeas, measurements,

&numPointsRead));

 for (i=0;i<10;i++)

printf("measurements[%d] = %f \n", i, measurements[i]);

 printf("\n\n");

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-23 NI-DMM Software User Manual

 Error:

 if (vi)

 niDMM_close(vi);

 if (error < VI_SUCCESS)

 messageHandler(error);

 }

Use the niDMM ConfigureMultipoint function to implement a Sample
Trigger Pulse. This function configures the sample DMM trigger attributes.
These attributes include the trigger source and sample interval. If you set
Trigger Source to External on the panel, then you need to connect a TTL
signal to the EXT TRIG IN line.

If you are configured for an external trigger and an external sample trigger,
the moment the DMM receives the first pulse the DMM starts to take
sample count number of measurements, one every time a sample trigger
pulse arrives.

If you are configured for an immediate trigger and an external sample
trigger, at niDMM Read function execution time, the DMM starts making
sample count number of measurements, one every time a sample trigger
pulse arrives. Refer to your DMM’s User Manual for more information
about triggering.

Interval Scanning
Interval scanning is a scanning operation in which you have control over
the sample interval. In order to configure the DMM for interval scanning,
use niDMM Configure MultiPoint , and set:

• Sample Trigger to interval

• Sample Interval to the real number in seconds representing the desired
scan interval

Note If you set Sample Trigger to software, the DMM will acquire one data point every
time you are calling niDMM Send Software Trigger .

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-24 www.ni.com

Figure 4-12. Interval Scanning Front Panel

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-25 NI-DMM Software User Manual

Figure 4-13. Interval Scanning Block Diagram

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-26 www.ni.com

void main(void)

 {

 ViStatus error = VI_SUCCESS;

 ViSession vi = VI_NULL;

 ViString resourceName = "DAQ::1::INSTR";

 ViBoolean idQuery = VI_TRUE;

 ViBoolean reset = VI_TRUE;

 ViReal64 powerlineFreq = NIDMM_VAL_60_HERTZ;

 ViInt32 function = NIDMM_VAL_DC_VOLTS;

 ViReal64 range = 25.00;

 ViInt32 TrigSource = NIDMM_VAL_IMMEDIATE ;

 ViInt32 TrigSlope = NIDMM_VAL_POS;

 ViInt32 SampleTrigSource = NIDMM_VAL_INTERVAL;

 ViInt32 numOfMeas = 10;

 ViReal64 measurements[10];

 ViReal64 resolution = 0.001;

 ViInt32 i, timeLimit;

 ViInt32 numPointsRead;

 ViReal64 sampleInterval = 0.1;

 checkErr(niDMM_init(resourceName, idQuery, reset, &vi));

 /*- Calculate time limit--*/

 timeLimit = 3000;

 /*- Configure Powerline frequency--------------------------------------*/

 checkErr(niDMM_ConfigurePowerlineFrequency(vi, powerlineFreq));

 /*- Call NIDMM_ConfigureMeasurement() to set function, range and res---*/

 checkErr(niDMM_ConfigureMeasurement(vi, function, range, resolution));

 /*- Set Trigger Source and Trigger Delay-------------------------------*/

 checkErr(niDMM_ConfigureTrigger (vi, TrigSource, 0.0));

 /*- Set Trigger Slope--*/

 checkErr(niDMM_ConfigureTriggerSlope (vi, TrigSlope));

 /*- Configure a multipoint acquisition, Sample Trigger and sample

Interval-*/

 checkErr(niDMM_ConfigureMultiPoint(vi, 1, numOfMeas, SampleTrigSource,

sampleInterval));

 /*- Read measurements using NIDMM_ReadMultiPoint()---------------------*/

 checkErr(niDMM_ReadMultiPoint(vi, timeLimit, numOfMeas, measurements,

&numPointsRead));

 for (i=0;i<10;i++)

printf("measurements[%d] = %f \n", i, measurements[i]);

 printf("\n\n");

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-27 NI-DMM Software User Manual

 Error:

 if (vi)

 niDMM_close(vi);

 if (error < VI_SUCCESS)

 messageHandler(error);

 }

Handshaking Mode
In handshaking mode, the DMM generates a digital pulse on the voltmeter
complete (VMC) line when it finishes taking a measurement. If a
multiplexer is attached to the DMM, this pulse can be used to advance
the multiplexer to the next channel. When the analog circuitry of the
multiplexer has settled, the multiplexer generates a digital pulse on the
EXT TRIG IN line to the DMM. When the DMM receives this pulse,
it takes another measurement.

Handshaking mode can be considered as a particular case of the External
Trigger Pulse example, where the trigger comes from a multiplexer and the
voltmeter complete (VMC) pulse, which is generated by the NI-DMM
hardware, goes to the multiplexer. Use the niDMM Configure

Measurement Complete function to implement the emission of a digital
pulse on the VMC line at the end of each measurement. This function
configures the DMM Measurement Complete attributes. These attributes
include the destination and slope. Set Measurement Complete
Destination to External on the application panel for activation of the
VMC line.

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-28 www.ni.com

Figure 4-14. Handshaking Front Panel

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-29 NI-DMM Software User Manual

Figure 4-15. Handshaking Block Diagram

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-30 www.ni.com

void main(void)

 {

 ViStatus error = VI_SUCCESS;

 ViSession vi = VI_NULL;

 ViString resourceName = "DAQ::1::INSTR";

 ViBoolean idQuery = VI_TRUE;

 ViBoolean reset = VI_TRUE;

 ViReal64 powerlineFreq = NIDMM_VAL_60_HERTZ;

 ViInt32 function = NIDMM_VAL_DC_VOLTS;

 ViReal64 range = 25.00;

 ViInt32 numOfMeas = 10;

 ViReal64 measurements[10];

 ViReal64 resolution = 0.001;

 ViInt32 timeLimit;

 ViInt32 i, numPointsRead;

 checkErr(niDMM_init(resourceName, idQuery, reset, &vi));

 /*- Calculate time limit--*/

 timeLimit = 5000;

 /*- Configure Powerline frequency--------------------------------------*/

 checkErr(niDMM_ConfigurePowerlineFrequency(vi, powerlineFreq));

 /*- Call NIDMM_ConfigureMeasurement() to set function, range and res---*/

 checkErr(niDMM_ConfigureMeasurement(vi, function, range, resolution));

 /*- Configure measurement complete destination to EXTERNAL-------------*/

 checkErr(niDMM_ConfigureMeasurementComplete (vi, NIDMM_VAL_EXTERNAL,

NIDMM_VAL_NEG));

 /*- Configure a multipoint acquisition---------------------------------*/

 checkErr(niDMM_ConfigureMultiPoint (vi, 1, numOfMeas, NIDMM_VAL_EXTERNAL,

0.0));

 /*- Read measurements using NIDMM_ReadMultiPoint()---------------------*/

 checkErr(niDMM_ReadMultiPoint(vi, timeLimit, numOfMeas, measurements,

&numPointsRead));

 for (i=0;i<10;i++)

 printf("measurements[%d] = %f \n", i, measurements[i]);

 printf("\n\n");

 Error:

 if (vi)

 niDMM_close(vi);

 if (error < VI_SUCCESS)

 messageHandler(error);

 }

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-31 NI-DMM Software User Manual

Synchronous Mode
In synchronous mode, the DMM emits a digital pulse on the VMC line
when it finishes taking a measurement. If a multiplexer is attached to the
DMM, this pulse causes the multiplexer to advance to the next channel.
After a programmable delay has occurred, the DMM takes another
measurement without requiring an external trigger. Synchronous mode can
be considered as a particular case of the Internal Trigger Pulse example,
where the trigger is issued internally by the hardware after a programmed
delay.

Use the niDMM Configure Trigger function to implement the delay
of the Internal Trigger Pulse. Set Trigger Delay to the desired value
in seconds on the application panel. Use the niDMM Configure

Measurement Complete function to implement the emission of a digital
pulse on the VMC line at the end of each measurement. This function
configures the DMM Measurement Complete attributes. These attributes
include the destination and slope. Set Measurement Complete
Destination to External on the application panel for activation of the VMC
line, located on the front connector. Use TTL0–TTL7 to send VMC over
PXI trigger lines.

Figure 4-16. Synchronous Triggering Front Panel

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-32 www.ni.com

Figure 4-17. Synchronous Triggering Block Diagram

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-33 NI-DMM Software User Manual

void main(void)

 {

 ViStatus error = VI_SUCCESS;

 ViSession vi = VI_NULL;

 ViString resourceName = "DAQ::1::INSTR";

 ViBoolean idQuery = VI_TRUE;

 ViBoolean reset = VI_TRUE;

 ViReal64 powerlineFreq = NIDMM_VAL_60_HERTZ;

 ViInt32 function = NIDMM_VAL_DC_VOLTS;

 ViReal64 range = 25.00;

 ViInt32 numOfMeas = 10;

 ViReal64 measurements[10];

 ViReal64 resolution = 0.001;

 ViInt32 timeLimit;

 ViInt32 i, numPointsRead;

 checkErr(niDMM_init(resourceName, idQuery, reset, &vi));

 /*- Calculate time limit ---*/

 timeLimit = 5000;

 /*- Configure Powerline frequency--------------------------------------*/

 checkErr(niDMM_ConfigurePowerlineFrequency(vi, powerlineFreq));

 /*- Call NIDMM_ConfigureMeasurement() to set function, range and res---*/

 checkErr(niDMM_ConfigureMeasurement(vi, function, range, resolution));

 /*- Configure measurement complete destination to EXTERNAL-------------*/

 checkErr(niDMM_ConfigureMeasCompleteDest (vi, NIDMM_VAL_EXTERNAL));

 /*- Configure a multipoint acquisition---------------------------------*/

 checkErr(niDMM_ConfigureMultiPoint (vi, 1, numOfMeas,

NIDMM_VAL_IMMEDIATE, 0.0));

 /*- Read measurements using NIDMM_ReadMultiPoint()---------------------*/

 checkErr(niDMM_ReadMultiPoint(vi, timeLimit, numOfMeas, measurements,

&numPointsRead));

 for (i=0;i<10;i++)

 printf("measurements[%d] = %f \n", i, measurements[i]);

 printf("\n\n");

 Error:

 if (vi)

 niDMM_close(vi);

 if (error < VI_SUCCESS)

 messageHandler(error);

 }

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-34 www.ni.com

Scanning an SCXI Multiplexer Module Using the NI-DMM
You can use the NI-DMM products with National Instruments multiplexers
as well as third-party multiplexers that use traditional voltmeter signaling.

Traditional voltmeter signaling is a handshake protocol in which the
voltmeter starts a measurement when a trigger pulse occurs on its EXT
TRIG IN line, and emits a digital pulse on the voltmeter complete VMC
line when it finishes taking a measurement.

The following example shows, in LabVIEW, how to scan a measurement
using the the NI-DMM and NI-SWITCH instrument drivers with devices
such as the NI 4060 board with the SCXI-1127 switch module. You can find
this example on the NI-SWITCH and the NI-DMM CD under the Example
directory found in the root directory.

Note NI-SWITCH is the National Instruments switch driver, please refer to the
NI-SWITCH Software User Manual for information regarding these functions.

Perform the following steps to scan a measurement:

1. Initialize and configure the switch. Configuration of the switch module
SCXI-1127 is implemented by using NI-SWITCH functions.

a. Set Chassis Descriptor to SCXI1::4::SCANNER.

b. Set Scan List (ex: ob0!sc1!md4!ch1->com0;
ob0!sc1!md4!ch2->com0. This example will scan channels 1 and
2 on the module in slot 4).

c. Set Reset MUX to YES.

d. Set Trigger Input to Rear Connector of Module 4.

e. Set Scan Advanced Output to NONE.

f. Configure the scan list using niSwitch Configure Scan

List .

2. Initialize and configure the DMM. This acquisition is of Continuous
type, which was previously discussed.

a. Set the Function, Resolution, AutoZero, Powerline Frequency,
and Range attributes of the DMM hardware.

b. Set the delay and get the measurement period value.

3. Initiate the switch.

4. Initiate the DMM.

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-35 NI-DMM Software User Manual

5. Fetch and demultiplex the acquired data inside the loop.

6. Abort and close the DMM.

7. Abort and close the switch.

Figure 4-18. Scanning of SCXI Front Panel

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-36 www.ni.com

Figure 4-19. Scanning of SCXI Block Diagram

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-37 NI-DMM Software User Manual

void main(void)

 {

 ViStatus error = VI_SUCCESS;

 ViSession vi = VI_NULL;

 ViSession instr = VI_NULL;

 ViString resourceName = "DAQ::1::INSTR";

 ViString scxichan = "sc1!md4!ch26->com0;";

 ViBoolean idQuery = VI_TRUE;

 ViBoolean reset = VI_TRUE;

 ViReal64 powerlineFreq = NIDMM_VAL_60_HERTZ;

 ViInt32 function = NIDMM_VAL_DC_VOLTS;

 ViReal64 range = 25.00;

 ViInt32 numOfMeas = 10;

 ViReal64 measurements[10];

 ViReal64 resolution = 0.001;

 ViInt32 timeLimit;

 ViReal64 delay = 0.5;

 ViReal64 sampleInterval = 0.1;

 ViReal64 period;

 ViInt32 numpts,i;

 /*- NI-SWITCH configurations---*/

 checkErr(niSwitch_init ("SCXI1::SCANNER", VI_TRUE,

VI_TRUE, &instr));

 checkErr(niSwitch_ConfigureScanTrigger (instr, 0.0,

NISWITCH_VAL_REARCONNECTOR_MODULE4,

NISWITCH_VAL_NONE));

 checkErr(niSwitch_ConfigureScanList (instr, scxichan,

NISWITCH_VAL_BREAK_BEFORE_MAKE));

 checkErr(niSwitch_SetContinuousScan (instr, 1));

 checkErr(niDMM_init(resourceName, idQuery, reset, &vi));

 /*- Calculate time limit---*/

 timeLimit = 30000;

 /*- Configure Powerline frequency--------------------------------------*/

 checkErr(niDMM_ConfigurePowerlineFrequency(vi, powerlineFreq));

 /*- Call NIDMM_ConfigureMeasurement() to set function, range and res---*/

 checkErr(niDMM_ConfigureMeasurement(vi, function, range, resolution));

 /*- Call NIDMM_Configure Trigger() to set trigger delay----------------*/

 checkErr(niDMM_ConfigureTrigger (vi, NIDMM_VAL_IMMEDIATE, delay));

 /*- Configure a multipoint acquisition, set sample interval------------*/

 checkErr(niDMM_ConfigureMultiPoint(vi, 1, numOfMeas, NIDMM_VAL_INTERVAL,

sampleInterval));

 /*- Get period measurement---*/

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-38 www.ni.com

 checkErr(niDMM_GetMeasurementPeriod (vi, &period));

 /*- Initiate switch and DMM--*/

 checkErr(niSwitch_InitiateScan (instr));

 checkErr(niDMM_Initiate (vi));

 /*- Fetch 30 measurementswith DMM--------------------------------------*/

 checkErr(niDMM_FetchMultiPoint (vi, timeLimit, 10, measurements,

&numpts));

 for (i=0;i<10;i++)

 printf("measurements[%d] = %f \n", i, measurements[i]);

 printf("\n\n");

 /*- Abort and Close DMM and Switch--------------------------------------*/

 checkErr(niDMM_Abort (vi));

 checkErr(niDMM_close (vi));

 checkErr(niSwitch_AbortScan(instr));

 checkErr(niSwitch_close (instr));

Error:

 if (vi)

 niDMM_close(vi);

 if (error < VI_SUCCESS)

 messageHandler(error);

 }

Notice that you did not use niDMM Configure Measurement Complete
to implement the generation of a digital pulse on the VMC line at the end
of each measurement. This is possible because when you configure the
SCXI-1127 as connected to NI 4060 in Measurement & Automation
Explorer, prior to running the switch application, Measurement &
Automation Explorer automatically connects the VMC line of the
NI-DMM hardware, via the SCXI backplane, to the SCXI-1127 switch
module.

The scanning of the SCXI-1127 example can be simplified by using higher
level functions that implement part of the functionality. You can rebuild this
example using higher-level functions that configure the switch; configure
the NI-DMM; and fetch and demultiplex the readings. The scanning of
SCXI-1127 high-level example is a compressed remake, which shows how
implementation of higher-level functions make it easier to read an
application. The following high-level functions are used in this example:

• Create Channel String

• Initialize and Configure Switch

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-39 NI-DMM Software User Manual

• Initialize and Configure DMM

• Fetch and Demux Data

Note You can find these example in the NI-SWITCH CD in the Example directory, in the
niDMM&Switch Application.llb file.

Figure 4-20. Scanning of SCXI High-Level Front Panel

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-40 www.ni.com

Figure 4-21. Scanning of SCXI High-Level Diagram

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-41 NI-DMM Software User Manual

We can compress the previous example even further by including all its
functionality into three distinct blocks:

• Initialize and initiate the measurement.

• Fetch the data and do the scaling (if necessary).

• Close DMM and switch sessions. Abort scanning (if necessary).

This model is a good tool for measuring voltage and scaling the reading into
different measurement units, depending on the sensor type.

Figure 4-22. Measure Voltage with DMM and Switches Front Panel

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-42 www.ni.com

Figure 4-23. Measure Voltage with DMM and Switches Block Diagram

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-43 NI-DMM Software User Manual

The idea is that once you have the acquisition running, the driver hides its
details within high-level functions and shifts the application focus to other
tasks like scaling, presentation, storage, transmission of data, and so on.

Temperature with Thermocouple Measurement
To implement a thermocouple measurement application using the
combination DMM-Switch, complete the following steps:

1. Open the Voltage Measurement example.

2. Inside the fetch and demux loop, implement linearization for the
type of thermocouple used. For cold-junction compensation, the
SCXI-1331 terminal block has a thermistor with a 189 kΩ reference
resistor. We used this method to create the Measure Thermocouple

with DMM and Switches.vi example.

Note For this implementation to work properly, you need to retrieve the CJS voltage data
out of the measured output array. To retrieve the data, complete the following steps:

1. Assign one module only to each element of the scan list.

2. Enter each channel of the module explicitly.

3. Make the CJS channel the first channel in each module channel list.
The CJS channel should always be the first channel.

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-44 www.ni.com

Figure 4-24. Measure Thermocouple with DMM and Switches Front Panel

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-45 NI-DMM Software User Manual

Figure 4-25. Measure Thermocouple with DMM and Switches Block Diagram

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-46 www.ni.com

Temperature with Thermistor Measurement
To implement a temperature with thermistor measurement with the
combination DMM-Switch, complete the following steps:

1. Open the Voltage Measurement example.

2. Go inside the fetch and demux loop, and implement linearization for
the type of thermistor used.

3. Set Excitation Current to 1.00 and the Type of Excitation to Current
Reference as inputs to the Convert Thermistor Reading function.

4. Set Function to two-wire resistance, and the Range to 20000 Ω, on the
application panel.

Figure 4-26. Measure Thermistor with DMM and Switches Front Panel

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-47 NI-DMM Software User Manual

Figure 4-27. Measure Thermistor with DMM and Switches Block Diagram

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-48 www.ni.com

Temperature with RTD Measurement
To implement a temperature measurement with RTDs using the
DMM-Switch combination, complete the following steps:

1. Open the Voltage Measurement example.

2. Go inside the fetch and demux loop, and implement the linearization
for the type of RTD used.

3. Specify the RTD coefficients A, B, C, and R0 in the Convert RTD

Reading function.

4. On the application panel, set the DMM Function to four-wire
resistance and the Range to 2000 Ω, or to the appropiate range that
covers the RTD resistance range.

Figure 4-28. Measure RTD with DMM and Switches Front Panel

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-49 NI-DMM Software User Manual

Figure 4-29. Measure RTD with DMM and Switches Block Diagram

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-50 www.ni.com

Several Sensor-Type Measurements in the Same
Application
Sometimes you may need to use combinations of different sensors. In the
following example, the VIs are reading three voltage sensors, followed by
three thermocouples, followed by three RTDs for temperature—everything
inside the same application. Since the focus should be on scaling and
presentation, not on setting up the scanning operation, the VI runs as a
higher-level function, Configure and Read Measurement , which
reads groups of channels of the same function, range, number of samples,
and resolution type. This high-level function takes care of the acquisition
part completely; it implements a foreground-type acquisition by scanning
each group of sensors one at a time.

Once data from each distinct group of channels is acquired, it is easy to
implement the scaling and presentation of data.

Figure 4-30. Measure Voltage and Temperature with DMM and Switches Front Panel

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-51 NI-DMM Software User Manual

Figure 4-31. Measure Voltage and Temperature with DMM and Switches Block Diagram

Configure and Read Measurement.vi

Chapter 4 NI-DMM Driver Application Examples

NI-DMM Software User Manual 4-52 www.ni.com

The Configure and Read Measurement.vi is shown in Figure 4-32
and Figure 4-33.

Figure 4-32. Configure and Read Measurement Front Panel

Chapter 4 NI-DMM Driver Application Examples

© National Instruments Corporation 4-53 NI-DMM Software User Manual

Figure 4-33. Configure and Read Measurement Block Diagram

© National Instruments Corporation 5-1 NI-DMM Software User Manual

5
NI-DAQ Driver Application
Examples

NI-DAQ is a set of functions that control all of the National Instruments
plug-in DAQ devices for analog I/O, digital I/O, timing I/O, SCXI signal
conditioning, and Real-Time System Integration (RTSI) multiboard
synchronization. DAQ devices are general-purpose data acquisition
devices, which National Instruments makes and offers under the software
umbrella of a unique driver software—NI-DAQ.

Computer-based instruments like the NI 4060 are instruments and so
are not classified as general-purpose DAQ devices, but they match
functionality in common with general-purpose DAQ devices. The
general-purpose functionality NI-DAQ offers is also supported by the
DMM product line. This architecture offers you two choices when using
the DMM hardware: to use the hardware as an instrument with NI-DMM,
or to use the hardware as a general-purpose DAQ device with NI-DAQ.

NI-DAQ Application Example
The most common technique for a nonbuffered, continuous analog input
data acquisition with NI-DAQ is the sequence AI_Configure followed by
AI_Single_Scan inside a While Loop. Call AI_Configure at the
beginning of your application to inform NI-DAQ about the input mode
(single-ended or differential), input range, and input polarity selected for
the device. AI_Single_Scan returns one scan of data from the previously
configured channel. This function starts an acquisition, retrieves a scan of
data, and then terminates the acquisition. You can repeat these tasks by
calling the function again and again inside a loop, as shown in Figure 5-2.

Chapter 5 NI-DAQ Driver Application Examples

NI-DMM Software User Manual 5-2 www.ni.com

Figure 5-1. NI-DAQ Acquisition Example Front Panel

Figure 5-2. NI-DAQ Acquisition Example Block Diagram

Chapter 5 NI-DAQ Driver Application Examples

© National Instruments Corporation 5-3 NI-DMM Software User Manual

This general data acquisition example works with the DMM hardware.

With the examples in this chapter, you can configure the input limits, which
in instrument terms are equivalent with configuring the range, and
implement access to other configurations like the auto zero mode,
powerline frequency, resolution, and function settings.

To be able to implement more instrument-type configurations with
NI-DAQ, you need to divide the AI_Configure function into its
components, AI_Group_Config , AI_Parameter , and
AI_Hardware_Config . AI_Group_Config associates the device with a
task ID. AI_Paramater gets, sets, or translates specific analog input
parameters. AI_Hardware_Config configures the range and polarity.

Figure 5-3 shows a modified example that configures the DMM for DC volt
measurement with 50 Hz or 60 Hz powerline frequency rejection. To use
this example, complete the following steps:

1. Call AI_Group_Config to set up the device and channel.

2. Call as many AI_Parameter function calls as the number of
configuration parameters you want to configure.

3. Call AI_Hardware_Config and AI_Single_Scan in a loop to
acquire the data one scan at a time.

Chapter 5 NI-DAQ Driver Application Examples

NI-DMM Software User Manual 5-4 www.ni.com

Figure 5-3. NI-DAQ Customized Example Front Panel

Chapter 5 NI-DAQ Driver Application Examples

© National Instruments Corporation 5-5 NI-DMM Software User Manual

Figure 5-4. NI-DAQ Customized Example Block Diagram

Chapter 5 NI-DAQ Driver Application Examples

NI-DMM Software User Manual 5-6 www.ni.com

NI-DAQ installs a similar LabVIEW example for NI-DMM hardware
under LabVIEW»Examples»Daq»AnalogIn»AnalogIn.llb»NI40XX
Digital Multimeter.vi .

Note If you used Data Neighborhood to create and configure a virtual DMM channel, you
do not need to call AI_Parameters .

Using Triggering with NI-DAQ
If you want to implement a trigger, specify the type of trigger as digital A
in the AI_Start.vi front panel. Make the read/search position parameter
equal to relative to trigger point in the AI_Read.vi block diagram. See
Figure 5-6.

Figure 5-5. NI-DAQ Acquire N Scans External Start Trigger Front Panel

Chapter 5 NI-DAQ Driver Application Examples

© National Instruments Corporation 5-7 NI-DMM Software User Manual

Figure 5-6. NI-DAQ Acquire N Scans External Start Trigger Block Diagram

Chapter 5 NI-DAQ Driver Application Examples

NI-DMM Software User Manual 5-8 www.ni.com

If you want to implement an external sample trigger, you need to specify
which clock (scan clock 1) and clock source code (Trigger Input, low to
high) in the AI_Clock_Config.vi front panel. As shown in Figure 5-7.

Figure 5-7. NI-DAQ Acquire N Scans External Sample Trigger Front Panel

Chapter 5 NI-DAQ Driver Application Examples

© National Instruments Corporation 5-9 NI-DMM Software User Manual

Figure 5-8. NI-DAQ Acquire N Scans External Sample Trigger Block Diagram

Chapter 5 NI-DAQ Driver Application Examples

NI-DMM Software User Manual 5-10 www.ni.com

Using the DMM with SCXI Multiplexers in NI-DAQ
You can scan an SCXI multiplexer such as the SCXI-1127 using the
following sequence of calls in a loop:

• AI_Configure

• AI_Start

• AI_Read

For example, if you have one SCXI chassis (your SCXI-1127 module is
located in slot 4 of the chassis) and if you are scanning channels 1, 2, and
3 of the module, then you would set the channel input to ob0!sc1!md4!1:3
on the panel. NI-DAQ ensures the scan clock is routed from the DMM to
the SCXI-1127 module.

Figure 5-9. NI-DAQ Scan SCXI Front Panel

Chapter 5 NI-DAQ Driver Application Examples

© National Instruments Corporation 5-11 NI-DMM Software User Manual

Figure 5-10. NI-DAQ Scan SCXI Block Diagram

© National Instruments Corporation 6-1 NI-DMM Software User Manual

6
Build Your Own Application

The most important principle to remember when building your new
application is to never start from scratch! You can save time and effort and
eliminate mistakes by using or modifying the example programs provided
with NI-DMM.

If you are using LabVIEW, open the niDMM&Switch Application VI

Tree . Shown in Figure 6-1. You can find the application tree on the
NI-SWITCH CD under the Example directory.

Figure 6-1. Application Tree Front Panel

Chapter 6 Build Your Own Application

NI-DMM Software User Manual 6-2 www.ni.com

Choose the example that best applies to your application. See Figure 6-2.
You can use the example as it is, or modify it according to what you want
to implement, by using any of the other examples that show how the
modification should be implemented.

Figure 6-2. Application Tree Block Diagram

The application tree contains examples for measuring voltages and taking
measurements with thermocouples, RTDs, and thermistors. For other
sensor types, use the Measure Voltage example and apply your own scaling
to voltage data.

© National Instruments Corporation A-1 NI-DMM Software User Manual

A
Microsoft Visual Basic
Examples

This appendix shows the Visual Basic syntax of the examples in this
manual.

Foreground Acquisition

Figure A-1. Foreground Acquisition Front Panel

Private Sub Acquire_Click()

 Dim vi As ViSession

 Dim resolution As ViReal64

 Dim triggerDelay As ViReal64

 Dim timeLimit As ViInt32

 Dim numPointsRead As ViInt32

 Dim i As ViInt32

 Dim numelements As ViInt32

 Dim measurementArray() As ViReal64

 ReDim measurementArray(1 To Val(numOfMeasurements.Text))

 measurements.Text = ""

 'Disable Acquire button until acquistion complete

Appendix A Microsoft Visual Basic Examples

NI-DMM Software User Manual A-2 www.ni.com

 Acquire.Enabled = False

 'Open a session to the instrument

 If CheckError(niDMM_init(instrumentDescriptor.Text, VI_TRUE, VI_TRUE, _

vi)) Then

 GoTo Error

 End If

 'Set these values to desired defaults.

 resolution = 1#

 triggerDelay = 0#

 timeLimit = 10000

 resolution = 1#

 'Set the powerline frequency

 If CheckError(niDMM_ConfigurePowerlineFrequency(vi, _

plfVal(powerlineFreq.ListIndex))) Then

 GoTo Error

 End If

 'Configure the acquistion

 If CheckError(niDMM_ConfigureMeasurement(vi, CtlVal(measFunction), _

Val(range.Text), resolution)) Then

 GoTo Error

 End If

 'Set trigger source and delay

 If CheckError(niDMM_ConfigureTrigger(vi, NIDMM_VAL_IMMEDIATE, _

triggerDelay)) Then

 GoTo Error

 End If

 'Set the number of measurements

 If CheckError(niDMM_ConfigureMultiPoint(vi, 1,

Val(numOfMeasurements.Text), _

NIDMM_VAL_IMMEDIATE, 0#)) Then

 GoTo Error

 End If

 'Read the measurements

 If CheckError(niDMM_ReadMultiPoint(vi, timeLimit, _

CInt(numOfMeasurements.Text), _

measurementArray(1), numelements)) Then

 GoTo Error

 End If

 'Format and display measurements

 For i = 1 To CInt(numOfMeasurements.Text)

 measurements.Text = measurements.Text & _

Appendix A Microsoft Visual Basic Examples

© National Instruments Corporation A-3 NI-DMM Software User Manual

Format(measurementArray(i), "##0.000000") & _

vbCrLf

 Next i

 'Abort the acquisition

 If CheckError(niDMM_Abort(vi)) Then

 GoTo Error

 End If

 'Always close the instrument, even if an error occured in

 'niDMM_SimpleAcquisition

 niDMM_close (vi)

Error:

 'Enable acquire button

 Acquire.Enabled = True

End Sub

Background Acquisition

Figure A-2. Background Acquisition Front Panel

Private Sub Acquire_Click()

 Dim vi As ViSession

 Dim resolution As ViReal64

 Dim triggerDelay As ViReal64

 Dim timeLimit As ViInt32

 Dim numPointsRead As ViInt32

 Dim i As ViInt32

 Dim numelements As ViInt32

Appendix A Microsoft Visual Basic Examples

NI-DMM Software User Manual A-4 www.ni.com

 Dim measurementArray() As ViReal64

 ReDim measurementArray(1 To Val(numOfMeasurements.Text))

 measurements.Text = ""

 'Disable Acquire button until acquistion complete

 Acquire.Enabled = False

 'Open a session to the instrument

 If CheckError(niDMM_init(instrumentDescriptor.Text, VI_TRUE, VI_TRUE, _

vi)) Then

 GoTo Error

 End If

 'Set these values to desired defaults.

 resolution = 1#

 triggerDelay = 0#

 timeLimit = 10000

 resolution = 1#

 'Set the powerline frequency

 If CheckError(niDMM_ConfigurePowerlineFrequency(vi, _

plfVal(powerlineFreq.ListIndex))) Then

 GoTo Error

 End If

'Configure the acquistion

 If CheckError(niDMM_ConfigureMeasurement(vi, CtlVal(measFunction), _

Val(range.Text), resolution)) Then

 GoTo Error

 End If

 'Set trigger source and delay

 If CheckError(niDMM_ConfigureTrigger(vi, NIDMM_VAL_IMMEDIATE, _

triggerDelay)) Then

 GoTo Error

 End If

 'Set the number of measurements

 If CheckError(niDMM_ConfigureMultiPoint(vi, 1,

Val(numOfMeasurements.Text), _

NIDMM_VAL_IMMEDIATE, 0#)) Then

 GoTo Error

 End If

 'Initiate the measurements

 If CheckError(niDMM_Initiate(vi)) Then

 GoTo Error

 End If

 'Read the measurements

Appendix A Microsoft Visual Basic Examples

© National Instruments Corporation A-5 NI-DMM Software User Manual

 If CheckError(niDMM_FetchMultiPoint(vi, timeLimit, _

CInt(numOfMeasurements.Text), _

measurementArray(1), numelements)) Then

 GoTo Error

 End If

 'Format and display measurements

 For i = 1 To CInt(numOfMeasurements.Text)

 measurements.Text = measurements.Text & _

Format(measurementArray(i), "##0.000000") & _

vbCrLf

 Next i

 'Abort the acquisition

 If CheckError(niDMM_Abort(vi)) Then

 GoTo Error

 End If

 'Always close the instrument, even if an error occured in

 'niDMM_SimpleAcquisition

 niDMM_close (vi)

Error:

 'Enable acquire button

 Acquire.Enabled = True

End Sub

Appendix A Microsoft Visual Basic Examples

NI-DMM Software User Manual A-6 www.ni.com

Triggered Acquisition

Figure A-3. Triggered Acquisition Front Panel

Private Sub Acquire_Click()

 Dim vi As ViSession

 Dim resolution As ViReal64

 Dim triggerDelay As ViReal64

 Dim TrigSource As ViInt32

 Dim TrigSlope As ViInt32

 Dim SampleTrigSource As ViInt32

 Dim SampleTrigSlope As ViInt32

 Dim timeLimit As ViInt32

 Dim numPointsRead As ViInt32

 Dim i As ViInt32

 Dim numelements As ViInt32

 Dim measurementArray() As ViReal64

 ReDim measurementArray(1 To Val(numOfMeasurements.Text))

 measurements.Text = ""

 TrigSource = NIDMM_VAL_IMMEDIATE

 TrigSlope = NIDMM_VAL_POS

 SampleTrigSource = NIDMM_VAL_IMMEDIATE

 SampleTrigSlope = NIDMM_VAL_POS

 'Disable Acquire button until acquistion complete

 Acquire.Enabled = False

 'Open a session to the instrument

 If CheckError(niDMM_init(instrumentDescriptor.Text, VI_TRUE, VI_TRUE, _

vi)) Then

Appendix A Microsoft Visual Basic Examples

© National Instruments Corporation A-7 NI-DMM Software User Manual

 GoTo Error

 End If

 'Set these values to desired defaults.

 resolution = 1#

 triggerDelay = 0#

 timeLimit = 10000

 'Set the powerline frequency

 If CheckError(niDMM_ConfigurePowerlineFrequency(vi, _

plfVal(powerlineFreq.ListIndex))) Then

 GoTo Error

 End If

 'Configure the acquistion

 If CheckError(niDMM_ConfigureMeasurement(vi, CtlVal(measFunction), _

Val(range.Text), resolution)) Then

 GoTo Error

 End If

 'Set trigger source and delay

 If CheckError(niDMM_ConfigureTrigger(vi, TrigSource, _

triggerDelay)) Then

 GoTo Error

 End If

 'Set trigger slope

 If CheckError(niDMM_ConfigureTriggerSlope(vi, TrigSlope)) Then

 GoTo Error

 End If

 'Set the number of measurements

 If CheckError(niDMM_ConfigureMultiPoint(vi, 1,

Val(numOfMeasurements.Text), _

SampleTrigSource, 0#)) Then

 GoTo Error

 End If

 'Set sample trigger slope

 'If CheckError(niDMM_ConfigureSampleTriggerSlope(vi, SampleTrigSlope))

Then

 'GoTo Error

 'End If

 'Read the measurements

 If CheckError(niDMM_ReadMultiPoint(vi, timeLimit, _

CInt(numOfMeasurements.Text), _

measurementArray(1), numelements)) Then

 GoTo Error

Appendix A Microsoft Visual Basic Examples

NI-DMM Software User Manual A-8 www.ni.com

 End If

 'Format and display measurements

 For i = 1 To CInt(numOfMeasurements.Text)

 measurements.Text = measurements.Text & _

Format(measurementArray(i), "##0.000000") & _

vbCrLf

 Next i

 'Abort the acquisition

 If CheckError(niDMM_Abort(vi)) Then

 GoTo Error

 End If

 'Always close the instrument, even if an error occured in

 'niDMM_SimpleAcquisition

 niDMM_close (vi)

Error:

 'Enable acquire button

Interval Scanning

Figure A-4. Interval Scanning Front Panel

Private Sub Acquire_Click()

 Dim vi As ViSession

 Dim resolution As ViReal64

 Dim SampleTrigSource As ViInt32

 Dim SampleInterval As ViReal64

 Dim timeLimit As ViInt32

Appendix A Microsoft Visual Basic Examples

© National Instruments Corporation A-9 NI-DMM Software User Manual

 Dim numPointsRead As ViInt32

 Dim i As ViInt32

 Dim numelements As ViInt32

 Dim measurementArray() As ViReal64

 ReDim measurementArray(1 To Val(numOfMeasurements.Text))

 measurements.Text = ""

 SampleTrigSource = NIDMM_VAL_INTERVAL

 SampleInterval = 0.1

 'Disable Acquire button until acquistion complete

 Acquire.Enabled = False

 'Open a session to the instrument

 If CheckError(niDMM_init(instrumentDescriptor.Text, VI_TRUE, VI_TRUE, _

vi)) Then

 GoTo Error

 End If

 'Set these values to desired defaults.

 resolution = 1#

 timeLimit = 10000

 'Set the powerline frequency

 If CheckError(niDMM_ConfigurePowerlineFrequency(vi, _

plfVal(powerlineFreq.ListIndex))) Then

 GoTo Error

 End If

 'Configure the acquistion

 If CheckError(niDMM_ConfigureMeasurement(vi, CtlVal(measFunction), _

Val(range.Text), resolution)) Then

 GoTo Error

 End If

 'Set the number of measurements

 If CheckError(niDMM_ConfigureMultiPoint(vi, 1,

Val(numOfMeasurements.Text), _

SampleTrigSource, SampleInterval)) Then

 GoTo Error

 End If

 'Read the measurements

 If CheckError(niDMM_ReadMultiPoint(vi, timeLimit, _

CInt(numOfMeasurements.Text), _

measurementArray(1), numelements)) Then

 GoTo Error

 End If

'Format and display measurements

Appendix A Microsoft Visual Basic Examples

NI-DMM Software User Manual A-10 www.ni.com

 For i = 1 To CInt(numOfMeasurements.Text)

 measurements.Text = measurements.Text & _

Format(measurementArray(i), "##0.000000") & _

vbCrLf

 Next i

 'Abort the acquisition

 If CheckError(niDMM_Abort(vi)) Then

 GoTo Error

 End If

 'Always close the instrument, even if an error occured in

 'niDMM_SimpleAcquisition

 niDMM_close (vi)

Error:

 'Enable acquire button

 Acquire.Enabled = True

End Sub

Handshaking Acquisition

Figure A-5. Handshaking Front Panel

Private Sub Acquire_Click()

Private Sub Acquire_Click()

 Dim vi As ViSession

 Dim measurementArray() As ViReal64

 Dim i As ViInt32

 ReDim measurementArray(1 To Val(numOfMeasurements.Text))

Appendix A Microsoft Visual Basic Examples

© National Instruments Corporation A-11 NI-DMM Software User Manual

 measurements.Text = ""

 Dim resolution As ViReal64

 Dim timeLimit As ViInt32

 Dim numPointsRead As ViInt32

 'Set these values to desired defaults.

 resolution = 1#

 timeLimit = 10000

 'Disable Acquire button until acquistion complete

 Acquire.Enabled = False

 'Open a session to the instrument

 If CheckError(niDMM_init(instrumentDescriptor.Text, VI_TRUE, VI_TRUE,

vi)) Then

 GoTo Error

 End If

 'Set the powerline frequency

 If CheckError(niDMM_ConfigurePowerlineFrequency(vi,

CtlVal(powerlineFreq))) Then

 GoTo Error

 End If

 'Configure the acquistion

 If CheckError(niDMM_ConfigureMeasurement(vi, CtlVal(measFunction), _

Val(range.Text), resolution)) Then

 GoTo Error

 End If

 'Set the trigger

 If CheckError(niDMM_ConfigureTrigger(vi, NIDMM_VAL_IMMEDIATE, 0#)) Then

 GoTo Error

 End If

 'Configure measurement complte destination to external

 If CheckError(niDMM_ConfigureMeasCompleteDest(vi, NIDMM_VAL_EXTERNAL))

Then

 GoTo Error

 End If

 'Set the number of measurements

 If CheckError(niDMM_ConfigureMultiPoint(vi, 1, numOfMeasurements, _

NIDMM_VAL_EXTERNAL, 0#)) Then

 GoTo Error

 End If

 'Acquire the measurements

 If CheckError(niDMM_ReadMultiPoint(vi, timeLimit, numOfMeasurements, _

measurementArray(1), numPointsRead)) Then

Appendix A Microsoft Visual Basic Examples

NI-DMM Software User Manual A-12 www.ni.com

 GoTo Error

 End If

 'Format and display measurements

 For i = 1 To CInt(numOfMeasurements.Text)

 measurements.Text = measurements.Text & _

 Format(measurementArray(i), "##0.000000") & _

 vbCrLf

 Next i

 'Always close the instrument, even if an error occured in

 'niDMM_SimpleAcquisition

 niDMM_close (vi)

Error:

 'Enable acquire button

 Acquire.Enabled = True

End Sub

© National Instruments Corporation B-1 NI-DMM Software User Manual

B
Technical Support Resources

This appendix describes the comprehensive resources available to you in
the Technical Support section of the National Instruments Web site and
provides technical support telephone numbers for you to use if you have
trouble connecting to our Web site or if you do not have internet access.

NI Web Support
To provide you with immediate answers and solutions 24 hours a day,
365 days a year, National Instruments maintains extensive online technical
support resources. They are available to you at no cost, are updated daily,
and can be found in the Technical Support section of our Web site at
www.ni.com/support

Online Problem-Solving and Diagnostic Resources
• KnowledgeBase—A searchable database containing thousands of

frequently asked questions (FAQs) and their corresponding answers or
solutions, including special sections devoted to our newest products.
The database is updated daily in response to new customer experiences
and feedback.

• Troubleshooting Wizards—Step-by-step guides lead you through
common problems and answer questions about our entire product line.
Wizards include screen shots that illustrate the steps being described
and provide detailed information ranging from simple getting started
instructions to advanced topics.

• Product Manuals—A comprehensive, searchable library of the latest
editions of National Instruments hardware and software product
manuals.

• Hardware Reference Database—A searchable database containing
brief hardware descriptions, mechanical drawings, and helpful images
of jumper settings and connector pinouts.

• Application Notes—A library with more than 100 short papers
addressing specific topics such as creating and calling DLLs,
developing your own instrument driver software, and porting
applications between platforms and operating systems.

Appendix B Technical Support Resources

NI-DMM Software User Manual B-2 www.ni.com

Software-Related Resources
• Instrument Driver Network —A library with hundreds of instrument

drivers for control of standalone instruments via GPIB, VXI, or serial
interfaces. You also can submit a request for a particular instrument
driver if it does not already appear in the library.

• Example Programs Database—A database with numerous,
non-shipping example programs for National Instruments
programming environments. You can use them to complement the
example programs that are already included with National Instruments
products.

• Software Library —A library with updates and patches to application
software, links to the latest versions of driver software for National
Instruments hardware products, and utility routines.

Worldwide Support
National Instruments has offices located around the globe. Many branch
offices maintain a Web site to provide information on local services. You
can access these Web sites from www.ni.com/worldwide

If you have trouble connecting to our Web site, please contact your local
National Instruments office or the source from which you purchased your
National Instruments product(s) to obtain support.

For telephone support in the United States, dial 512 795 8248. For
telephone support outside the United States, contact your local branch
office:

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Brazil 011 284 5011, Canada (Calgary) 403 274 9391,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521,
China 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11,
France 01 48 14 24 24, Germany 089 741 31 30, Greece 30 1 42 96 427,
Hong Kong 2645 3186, India 91805275406, Israel 03 6120092,
Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456,
Mexico (D.F.) 5 280 7625, Mexico (Monterrey) 8 357 7695,
Netherlands 0348 433466, New Zealand 09 914 0488,
Norway 32 27 73 00, Poland 0 22 528 94 06, Portugal 351 1 726 9011,
Singapore 2265886, Spain 91 640 0085, Sweden 08 587 895 00,
Switzerland 056 200 51 51, Taiwan 02 2528 7227,
United Kingdom 01635 523545

© National Instruments Corporation G-1 NI-DMM Software User Manual

Glossary

Prefix Meaning Value

p- pico- 10–12

n- nano- 10–9

µ- micro- 10– 6

m- milli- 10–3

k- kilo- 103

M- mega- 106

G- giga- 109

Numbers/Symbols

° degrees

> greater than

≥ greater than or equal to

< less than

– negative of, or minus

Ω ohms

% percent

± plus or minus

+ positive of, or plus

A

AC alternating current

Glossary

NI-DMM Software User Manual G-2 www.ni.com

C

C Celsius

CJC cold junction compensation

CMOS complementary metal-oxide semiconductor

CMRR common-mode rejection ratio

D

DC direct current

DMM digital multimeter

driver software that controls a specific hardware device such as a DAQ device or
GPIB interface device

E

EEPROM electrically erased programmable read-only memory

EXTCLK External Clock signal

F

fc cutoff frequency

Fext external frequency

firmware software stored on chips that can store data without electricity, such as
EEPROM chips

G

Gs gain

Glossary

© National Instruments Corporation G-3 NI-DMM Software User Manual

H

handle a unique variable you use to refer to a window or other interface element in
C programming

hex hexadecimal

Hz hertz

I

in inch

IN+ positive input channel signal

IN– negative input channel signal

I/O input/output

INTR* Interrupt signal

M

max maximum

MB megabytes

min minutes/minimum

MIO multifunction I/O

MISO Master-In-Slave-Out signal

MOSI Master-Out-Slave-In signal

N

NP no pull-up

NRSE nonreferenced single-ended

Glossary

NI-DMM Software User Manual G-4 www.ni.com

O

OUTCLK Output Clock signal

OUTPUT Output signal

OUTPUT REF Output Reference signal

P

P pull-up

ppm parts per million

R

rms root mean square

RSVD Reserved signal/bit

RTSI Real-Time System Integration

S

s seconds

S/s samples per second—used to express the rate at which a DAQ board
samples an analog signal

SCANCLK Scan Clock Signal

SCXI Signal Conditioning eXtensions for Instrumentation (bus)

SERCLK Serial Clock signal

SERDATIN Serial Data In signal

SERDATOUT Serial Data Out signal

SLOT0SEL Slot 0 Select signal

SPICLK Serial Peripheral Interface Clock signal

Glossary

© National Instruments Corporation G-5 NI-DMM Software User Manual

T

THD total harmonic distortion

thermistor A semiconductor sensor that exhibits a repeatable change in electrical
resistance as a function of temperature. Most thermistors exhibit a negative
temperature coefficient.

V

V volts

VI Virtual Instrument—a program in the graphical programming language G;
so called because it models the appearance and function of a physical
instrument

VISA Virtual Instrument Software Architecture—a single interface library for
controlling GPIB, VXI, RS-232, and other types of instruments

Vrms volts, root mean square

VMC voltmeter complete

VXI VME eXtensions for Instrumentation (bus)

VXI plug&play
Systems Alliance

A group of VXI developers dedicated to making VXI devices as easy to use
as possible, primarily by simplifying software development.

© National Instruments Corporation I-1 NI-DMM Software User Manual

Index

A
Level 1

Level 2
Level 3

AC voltage measurement (Example 3-2), 3-8
acquisition model flowchart (figure), 4-1
application development, 6-1 to 6-2

Application Tree block diagram, 6-2
Application Tree front panel (figure), 6-1
saving time by using examples, 6-1

application examples. See also programming
examples.

Microsoft Visual Basic examples,
A-1 to A-12

background acquisition, A-3 to A-5
foreground acquisition, A-1 to A-3
handshaking acquisition, A-10 to A-12
interval scanning, A-8 to A-10
triggered acquisition, A-6 to A-8

NI-DAQ driver application
examples, 5-1 to 5-11

NI-DAQ application example,
5-1 to 5-6

scanning SCXI multiplexer,
5-10 to 5-11

triggering with NI-DAQ, 5-6 to 5-9
NI-DMM driver application examples,

4-1 to 4-53
background acquisition, 4-7 to 4-11
foreground acquisition, 4-12 to 4-15
handshaking mode, 4-27 to 4-30
initialize and close functions, 4-5
interval scanning, 4-23 to 4-27
scanning SCXI multiplexer module,

4-34 to 4-53
synchronous mode, 4-31 to 4-33
triggered acquisition, 4-15 to 4-23

application functions. See functions.
attributes, 2-4 to 2-6

accessing, 2-4 to 2-5
defined, 2-1
functionality, 2-5 to 2-6
read-only state attributes, 2-5 to 2-6
Set Auto Zero block diagram, 2-4
Set Powerline block diagram, 2-5

B
background acquisition

Microsoft Visual Basic examples,
A-3 to A-5

NI-DMM driver example, 4-7 to 4-11
block diagram, 4-9
example code, 4-10 to 4-11
front panel (figure), 4-8

C
close function, NI-DMM driver application

examples, 4-5
Close operation, 2-6
conventions used in manual, iv
current measurement (Example 3-2), 3-9

D
DC voltage measurement (Example 3-2),

3-4 to 3-7
discussion, 3-7
example code, 3-5 to 3-7
niDMM Easy IO Simple Acquisition block

diagram, 3-5
niDMM Easy IO Simple Acquisition front

panel (figure), 3-5
diagnostic resources, online, B-1

Index

NI-DMM Software User Manual I-2 www.ni.com

diode testing (Example 3-2), 3-9
documentation

conventions used in manual, iv
how to use this manual, 1-1

E
Error Message operation, 2-7
Error Query operation, 2-7
examples. See application examples.

F
foreground acquisition

Microsoft Visual Basic examples,
A-1 to A-3

NI-DMM driver application example,
4-12 to 4-15

block diagram, 4-13
example code, 4-14 to 4-15
front panel (figure), 4-12

functions
location of VIs and functions, 3-1
NI-DMM application function classes,

4-2 to 4-4
NI-DMM application functions,

4-5 to 4-6

H
handles, defined, 2-1
handshaking acquisition

Microsoft Visual Basic examples,
A-10 to A-12

NI-DMM driver application example,
4-27 to 4-30

block diagram, 4-29
example code, 4-30
front panel (figure), 4-28

I
initialization programming example

(Example 3-1), 3-2 to 3-4
block diagram, 3-2
discussion, 3-3 to 3-4
example code, 3-2 to 3-3

Initialize functions, NI-DMM driver
application examples, 4-5

Initialize operation
required VXIplug&play operations, 2-6
session communication, 2-2

Initialize with Options operation
Initialize With Options block

diagram, 2-3
session communication, 2-2 to 2-3

interval scanning
Microsoft Visual Basic examples,

A-8 to A-10
NI-DMM driver application example,

4-23 to 4-27
block diagram, 4-25
example code, 4-26 to 4-27
front panel (figure), 4-24

IVI Foundation, 1-2
IVI-DMM Specification support (note), 1-2

M
manual. See documentation.
Microsoft Visual Basic examples, A-1 to A-12

background acquisition, A-3 to A-5
foreground acquisition, A-1 to A-3
handshaking acquisition, A-10 to A-12
interval scanning, A-8 to A-10
triggered acquisition, A-6 to A-8

Index

© National Instruments Corporation I-3 NI-DMM Software User Manual

N
National Instruments Web support, B-1 to B-2
NI-DAQ driver application examples,

5-1 to 5-11
NI-DAQ application example, 5-1 to 5-6

block diagram, 5-2
customized example block

diagram, 5-5
customized example front panel

(figure), 5-4
front panel (figure), 5-2

overview, 5-1
scanning SCXI multiplexer

block diagram, 5-11
front panel (figure), 5-10

triggering with NI-DAQ, 5-6 to 5-9
Acquire N Scans external sample

trigger block diagram, 5-9
Acquire N Scans external sample

trigger front panel (figure), 5-8
Acquire N Scans external start trigger

block diagram, 5-7
Acquire N Scans external start trigger

front panel (figure), 5-6
NI-DMM driver application examples,

4-1 to 4-53
acquisition model flowchart (figure), 4-1
advanced programming using low-level

functions, 4-7
application functions, 4-5 to 4-6
background acquisition, 4-7 to 4-11
Easy IO Simple Acquisition block

diagram, 4-4
foreground acquisition, 4-12 to 4-15
function classes, 4-2 to 4-4
handshaking mode, 4-27 to 4-30
initialize and close functions, 4-5
interval scanning, 4-23 to 4-27

scanning SCXI multiplexer module,
4-34 to 4-53

NI-SWITCH example, 4-34 to 4-43
several sensor-type measurements in

same application, 4-50 to 4-53
temperature with RTD measurement,

4-48 to 4-49
temperature with thermistor

measurement, 4-46 to 4-47
temperature with thermocouple

measurement, 4-43 to 4-45
Simple Acquisition block diagram, 4-6
synchronous mode, 4-31 to 4-33
triggered acquisition, 4-15 to 4-23

niDMM Initialize block diagram, 2-4
NI-DMM software

attributes, 2-4 to 2-6
background information, 1-2
functions

application function classes,
4-2 to 4-4

application functions, 4-5 to 4-6
getting started, 2-1
IVI-DMM Specification support

(note), 1-2
operations, 2-6 to 2-7
overview, 2-1
requirements for getting started, 1-2
session communication, 2-2 to 2-3
terminology and definitions, 2-1

O
online problem-solving and diagnostic

resources, B-1
operations, 2-6 to 2-7

defined, 2-1, 2-6
VXI plug&play required operations,

2-6 to 2-7

Index

NI-DMM Software User Manual I-4 www.ni.com

P
problem-solving and diagnostic resources,

online, B-1
programming examples, 3-1 to 3-9. See also

application examples.
AC voltage measurement

(Example 3-2), 3-8
current measurement (Example 3-2), 3-9
DC voltage measurement (Example 3-2),

3-4 to 3-7
diode testing (Example 3-2), 3-9
initialization (Example 3-1), 3-2 to 3-4
overview, 3-1 to 3-2
resistance measurement (Example 3-2),

3-8 to 3-9

R
read-only state attributes, 2-5 to 2-6
requirements for getting started, 1-2
Reset operation, 2-6
resistance measurement (Example 3-2),

3-8 to 3-9
Revision Query operation, 2-7

S
scalable drivers, 2-2
scanning SCXI multiplexer module

(example), 4-34 to 4-53
high-level block diagram, 4-40
high-level front panel (figure), 4-39
NI-DAQ application example,

5-10 to 5-11
NI-SWITCH example, 4-34 to 4-43

block diagram, 4-36
example code, 4-37 to 4-39
front panel (figure), 4-35

several sensor-type measurements in
same application, 4-50 to 4-53

temperature with RTD measurement,
4-48 to 4-49

temperature with thermistor
measurement, 4-46 to 4-47

temperature with thermocouple
measurement, 4-43 to 4-45

voltage measurement with DMM and
switches block diagram, 4-42

voltage measurement with DMM and
switches front panel (figure), 4-41

Self Test operation, 2-7
sensor-type measurement example,

4-50 to 4-53
configure and read measurement block

diagram, 4-53
configure and read measurement front

panel (figure), 4-52
voltage and temperature measurement

block diagram, 4-51
voltage and temperature measurement

front panel (figure), 4-50
session communication, 2-2 to 2-3

Initialize With Options block
diagram, 2-2

niDMM Initialize block diagram, 2-2
Session block diagram, 2-4

sessions, defined, 2-1
software-related resources, B-2
synchronous mode NI-DMM driver example,

4-31 to 4-33
block diagram, 4-32
example code, 4-33
front panel (figure), 4-31

T
technical support resources, B-1 to B-2
temperature measurement examples

temperature with RTD measurement,
4-48 to 4-49

temperature with thermistor
measurement, 4-46 to 4-47

Index

© National Instruments Corporation I-5 NI-DMM Software User Manual

temperature with thermocouple
measurement example, 4-43 to 4-45

triggered acquisition
Microsoft Visual Basic examples,

A-6 to A-8
NI-DAQ example, 5-6 to 5-9

Acquire N Scans external sample
trigger block diagram, 5-9

Acquire N Scans external sample
trigger front panel (figure), 5-8

Acquire N Scans external start trigger
block diagram, 5-7

Acquire N Scans external start trigger
front panel (figure), 5-6

NI-DMM driver application example,
4-15 to 4-23

trigger pulses and sources, 4-15
trigger with external sample trigger,

4-20 to 4-23
trigger with internal sample trigger,

4-16 to 4-19

V
VIs, location of, 3-1
Visual Basic examples. See Microsoft Visual

Basic examples.
VXI plug&play required operations, 2-6 to 2-7

Error Query and Error Message, 2-7
Initialize and Close, 2-6
Reset, 2-6
Revision Query operation, 2-7
Self Test, 2-7

VXI plug&play Systems Alliance, 1-2

W
Web support from National Instruments,

B-1 to B-2
online problem-solving and diagnostic

resources, B-1
software-related resources, B-2

Worldwide technical support, B-2

	NI-DMM Software User Manual
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Conventions
	Contents
	Chapter 1 Introduction
	How to Use This Manual
	What You Need to Get Started
	Background
	VXIplug&play
	IVI

	Chapter 2 Getting Started
	Introduction
	Session Communication
	Attributes
	Accessing Attributes
	Attribute Functionality
	Read-Only State Attributes

	Operations
	Overview of VXIplug&play Required Operations
	Initialize and Close
	Reset
	Self Test
	Error Query and Error Message
	Revision Query

	Chapter 3 Introductory Programming Examples Using Easy I/O and Application Functions
	Basic Startup
	Example 3-1. Initialization
	Discussion

	Example 3-2. Measuring DC Volts with the NI-DMM
	Discussion

	Measuring AC Volts with the NI-DMM
	Measuring Resistance with the NI-DMM
	Measuring Current with the NI-DMM
	Testing Diodes with the NI-DMM

	Chapter 4 NI-DMM Driver Application Examples
	Examples
	Initialize and Close Functions
	Application Functions
	Advanced Programming Using Low-Level Functions
	Background Acquisition
	Foreground Acquisition
	Triggered Acquisition
	Interval Scanning
	Handshaking Mode
	Synchronous Mode
	Scanning an SCXI Multiplexer Module Using the NI-DMM
	Temperature with Thermocouple Measurement
	Temperature with Thermistor Measurement
	Temperature with RTD Measurement
	Several Sensor-Type Measurements in the Same Application

	Chapter 5 NI-DAQ Driver Application Examples
	NI-DAQ Application Example
	Using Triggering with NI-DAQ
	Using the DMM with SCXI Multiplexers in NI-DAQ

	Chapter 6 Build Your Own Application
	Appendix A Microsoft Visual Basic Examples
	Foreground Acquisition
	Background Acquisition
	Triggered Acquisition
	Interval Scanning
	Handshaking Acquisition

	Appendix B Technical Support Resources
	Glossary
	Numbers/Symbols
	A
	C-G
	H-N
	O-S
	T-V

	Index
	A-D
	E-M
	N-O
	P-T
	V-W

	Figures
	Figure 2-1. niDMM Initialize Block Diagram
	Figure 2-2. Initialize With Options Block Diagram
	Figure 2-3. Session Block Diagram
	Figure 2-4. Set Auto Zero Block Diagram
	Figure 2-5. Set Powerline Block Diagram
	Figure 3-1. niDMM Initialize Block Diagram
	Figure 3-2. Initialize Example Block Diagram
	Figure 3-3. niDMM Easy IO Simple Acquisition Front Panel
	Figure 3-4. niDMM Easy IO Simple Acquisition Block Diagram
	Figure 4-1. Acquisition Model Flowchart
	Figure 4-2. Easy I/O Simple Acquisition Block Diagram
	Figure 4-3. Simple Acquisition Block Diagram
	Figure 4-4. Background Acquisition Front Panel
	Figure 4-5. Background Acquisition Block Diagram
	Figure 4-6. Foreground Acquisition Front Panel
	Figure 4-7. Foreground Acquisition Block Diagram
	Figure 4-8. Trigger with Internal Sample Trigger Front Panel
	Figure 4-9. Trigger with Internal Sample Trigger Block Diagram
	Figure 4-10. Trigger with External Sample Trigger Front Panel
	Figure 4-11. Trigger with External Sample Trigger Block Diagram
	Figure 4-12. Interval Scanning Front Panel
	Figure 4-13. Interval Scanning Block Diagram
	Figure 4-14. Handshaking Front Panel
	Figure 4-15. Handshaking Block Diagram
	Figure 4-16. Synchronous Triggering Front Panel
	Figure 4-17. Synchronous Triggering Block Diagram
	Figure 4-18. Scanning of SCXI Front Panel
	Figure 4-19. Scanning of SCXI Block Diagram
	Figure 4-20. Scanning of SCXI High-Level Front Panel
	Figure 4-21. Scanning of SCXI High-Level Diagram
	Figure 4-22. Measure Voltage with DMM and Switches Front Panel
	Figure 4-23. Measure Voltage with DMM and Switches Block Diagram
	Figure 4-24. Measure Thermocouple with DMM and Switches Front Panel
	Figure 4-25. Measure Thermocouple with DMM and Switches Block Diagram
	Figure 4-26. Measure Thermistor with DMM and Switches Front Panel
	Figure 4-27. Measure Thermistor with DMM and Switches Block Diagram
	Figure 4-28. Measure RTD with DMM and Switches Front Panel
	Figure 4-29. Measure RTD with DMM and Switches Block Diagram
	Figure 4-30. Measure Voltage and Temperature with DMM and Switches Front Panel
	Figure 4-31. Measure Voltage and Temperature with DMM and Switches Block Diagram
	Figure 4-32. Configure and Read Measurement Front Panel
	Figure 4-33. Configure and Read Measurement Block Diagram
	Figure 5-1. NI-DAQ Acquisition Example Front Panel
	Figure 5-2. NI-DAQ Acquisition Example Block Diagram
	Figure 5-3. NI-DAQ Customized Example Front Panel
	Figure 5-4. NI-DAQ Customized Example Block Diagram
	Figure 5-5. NI-DAQ Acquire N Scans External Start Trigger Front Panel
	Figure 5-6. NI-DAQ Acquire N Scans External Start Trigger Block Diagram
	Figure 5-7. NI-DAQ Acquire N Scans External Sample Trigger Front Panel
	Figure 5-8. NI-DAQ Acquire N Scans External Sample Trigger Block Diagram
	Figure 5-9. NI-DAQ Scan SCXI Front Panel
	Figure 5-10. NI-DAQ Scan SCXI Block Diagram
	Figure 6-1. Application Tree Front Panel
	Figure 6-2. Application Tree Block Diagram
	Figure A-1. Foreground Acquisition Front Panel
	Figure A-2. Background Acquisition Front Panel
	Figure A-3. Triggered Acquisition Front Panel
	Figure A-4. Interval Scanning Front Panel
	Figure A-5. Handshaking Front Panel

